Fermatean Fuzzy TOPSIS Method and Its Application in Ranking Business Intelligence-Based Strategies in Smart City Context

Authors

DOI:

https://doi.org/10.31181/jopi31202532

Keywords:

Smart City, Business Intelligence, Fermatean Fuzzy Set, TOPSIS, Decision Making

Abstract

With the expansion of smart cities, the use of business intelligence (BI) has emerged as a crucial tool for resource optimization, increasing efficiency, and improving the citizens’ quality of life. BI enables companies to make better strategic decisions by analyzing vast amounts of urban data, helping them remain competitive in the dynamic smart city environment. This study utilizes content analysis and the Fermatean Fuzzy TOPSIS (FF-TOPSIS) method to rank the strategies based on business intelligence in the context of smart city. Initially, relevant criteria were identified through content analysis, and subsequently, five strategies were developed and ranked based on these criteria. The results revealed that the "Development of IOT-enabled smart networks (S2)" ranked highest, as it plays a significant role in optimizing resource management and enhancing urban service performance, thereby contributing greatly to the advancement of smart cities. "Process automation and the deployment of robotic systems (S5)" ranked second, as it enhances efficiency and reduces human errors. "Cloud platform integration for seamless access to data and services (S3)" also proved to be of considerable importance, ranking third, as it provides seamless access to data and services. " Artificial intelligence deployment for predictive analytics and process optimization (S4)" ranked fourth and was vital for predictive analytics and process optimization, while " Big data analytics for smart decision-making (S1)"—despite its importance—ranked fifth. Urban managers should prioritize the development of IOT networks to fully leverage their potential for resource management and efficiency gains. Following this, attention to process automation and AI integration can significantly enhance the quality of life for citizens and reduce urban costs.

Downloads

Download data is not yet available.

References

Rana, N. P., Luthra, S., Mangla, S. K., Islam, R., Roderick, S., & Dwivedi, Y. K. (2019). Barriers to the Development of Smart Cities in Indian Context. Information Systems Frontiers, 21(3), 503–525. https://doi.org/10.1007/s10796-018-9873-4

Dashkevych, O., & Portnov, B. A. (2022). Criteria for smart city identification: A systematic literature review. Sustainability, 14(8), 4448. https://doi.org/10.3390/su14084448

Choi, H.-S., & Song, S.-K. (2022). Direction for a transition toward smart sustainable cities based on the diagnosis of smart city plans. Smart Cities, 6(1), 156–178. https://doi.org/10.3390/smartcities6010009

Marsal-Llacuna, M.-L., Colomer-Llinàs, J., & Meléndez-Frigola, J. (2015). Lessons in urban monitoring taken from sustainable and livable cities to better address the Smart Cities initiative. Technological Forecasting and Social Change, 90, 611–622. https://doi.org/10.1016/j.techfore.2014.01.012

Regalia, B., McKenzie, G., Gao, S., & Janowicz, K. (2016). Crowdsensing smart ambient environments and services. Transactions in GIS, 20(3), 382–398. https://doi.org/10.1111/tgis.12233

Estrada, E., Martinez Vargas, M. P., Gómez, J., Peña Pérez Negron, A., López, G. L., & Maciel, R. (2019). Smart cities big data algorithms for sensors location. Applied Sciences, 9(19), 4196. https://doi.org/10.3390/app9194196

Trencher, G. (2019). Towards the smart city 2.0: Empirical evidence of using smartness as a tool for tackling social challenges. Technological Forecasting and Social Change, 142, 117–128. https://doi.org/10.1016/j.techfore.2018.07.033

Toli, A. M., & Murtagh, N. (2020). The concept of sustainability in smart city definitions. Frontiers in Built Environment, 6, 77. https://doi.org/10.3389/fbuil.2020.00077

Marine-Roig, E., & Clavé, S. A. (2015). Tourism analytics with massive user-generated content: A case study of Barcelona. Journal of Destination Marketing & Management, 4(3), 162–172. https://doi.org/10.1016/j.jdmm.2015.06.004

Perng, S.-Y., Kitchin, R., & Mac Donncha, D. (2018). Hackathons, entrepreneurial life and the making of smart cities. Geoforum, 97, 189–197. https://doi.org/10.1016/j.geoforum.2018.08.024

Yigitcanlar, T., & Cugurullo, F. (2020). The sustainability of artificial intelligence: An urbanistic viewpoint from the lens of smart and sustainable cities. Sustainability, 12(20), 8548. https://doi.org/10.3390/su12208548

Vinod Kumar, T. M. (Ed.). (2017). Smart Economy in Smart Cities: International Collaborative Research: Ottawa, St.Louis, Stuttgart, Bologna, Cape Town, Nairobi, Dakar, Lagos, New Delhi, Varanasi, Vijayawada, Kozhikode, Hong Kong. Springer Singapore. https://doi.org/10.1007/978-981-10-1610-3

Correia, D., Marques, J. L., & Teixeira, L. (2022). The state-of-the-art of smart cities in the European union. Smart Cities, 5(4), 1776–1810. https://doi.org/10.3390/smartcities5040089

Kim, H. M., Sabri, S., & Kent, A. (2021). Smart cities as a platform for technological and social innovation in productivity, sustainability, and livability: A conceptual framework. In Smart cities for technological and social innovation (pp. 9–28). Elsevier. https://doi.org/10.1016/B978-0-12-818886-6.00002-2

Bouramdane, A.-A. (2023). Optimal water management strategies: Paving the way for sustainability in smart cities. Smart Cities, 6(5), 2849–2882. https://doi.org/10.3390/smartcities6050128

Gracias, J. S., Parnell, G. S., Specking, E., Pohl, E. A., & Buchanan, R. (2023). Smart cities—A structured literature review. Smart Cities, 6(4), 1719–1743. https://doi.org/10.3390/smartcities6040080

Pandiyan, P., Saravanan, S., Usha, K., Kannadasan, R., Alsharif, M. H., & Kim, M.-K. (2023). Technological advancements toward smart energy management in smart cities. Energy Reports, 10, 648–677. https://doi.org/10.1016/j.egyr.2023.07.021

Nam, T., & Pardo, T. A. (2011). Smart city as urban innovation: Focusing on management, policy, and context. Proceedings of the 5th International Conference on Theory and Practice of Electronic Governance, 185–194. https://doi.org/10.1145/2072069.2072100

Parasol, M. (2018). The impact of China’s 2016 Cyber Security Law on foreign technology firms, and on China’s big data and Smart City dreams. Computer Law & Security Review, 34(1), 67–98. https://doi.org/10.1016/j.clsr.2017.05.022

Mishra, R. K., Kumari, C. L., Janaki Krishna, P. S., & Dubey, A. (2022). Smart Cities for Sustainable Development: An Overview. In R. K. Mishra, C. L. Kumari, S. Chachra, P. S. J. Krishna, A. Dubey, & R. B. Singh (Eds.), Smart Cities for Sustainable Development (pp. 1–12). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-7410-5_1

Solanki, A. S., Patel, C., & Doshi, N. (2019). Smart cities-A case study of Porto and Ahmedabad. Procedia Computer Science, 160, 718–722. https://doi.org/10.1016/j.procs.2019.11.021

Nagy, Z., Szep, T. S., & Szendi, D. (2019). Regional Disparities in Hungarian Urban Energy Consumption-A Link between Smart Cities and Successful Cities. Geographia Technica, 14(1), 92–102. http://dx.doi.org/10.21163/GT_2019.

Patel, Y., & Doshi, N. (2019). Social implications of smart cities. Procedia Computer Science, 155, 692–697. https://doi.org/10.1016/j.procs.2019.08.099

Morello, R., Mukhopadhyay, S. C., Liu, Z., Slomovitz, D., & Samantaray, S. R. (2017). Advances on sensing technologies for smart cities and power grids: A review. IEEE Sensors Journal, 17(23), 7596–7610. https://doi.org/10.1109/JSEN.2017.2735539

Kanaya, T., Nakao, A., Yamamoto, S., Oguchi, M., & Yamaguchi, S. (2020). Edge computing for IoT sensors based on DPN. 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan), 1–2. https://doi.org/10.1109/ICCE-Taiwan49838.2020.9258322

Qi, Q., & Tao, F. (2019). A smart manufacturing service system based on edge computing, fog computing, and cloud computing. IEEE Access, 7, 86769–86777. https://doi.org/10.1109/ACCESS.2019.2923610

Astrain, J. J., Falcone, F., Lopez-Martin, A. J., Sanchis, P., Villadangos, J., & Matias, I. R. (2021). Monitoring of electric buses within an urban smart city environment. IEEE Sensors Journal, 22(12), 11364–11372. https://doi.org/10.1109/SENSORS47125.2020.9278791

Arroub, A., Zahi, B., Sabir, E., & Sadik, M. (2016). A literature review on Smart Cities: Paradigms, opportunities and open problems. 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), 180–186. https://doi.org/10.1109/WINCOM.2016.7777211

Khawaja, S., & Javidroozi, V. (2023). Blockchain technology as an enabler for cross‐sectoral systems integration for developing smart sustainable cities. IET Smart Cities, 5(3), 151–172. https://doi.org/10.1049/smc2.12059

Gharedaghi Kloucheh, S., Khoubanfar, H., Moghaddam Matin, M., & Behnam Rassouli, F. (2021). Investigating effects of galbanic acid on the viability of LoVo colon carcinoma cells. 21st International and 9th National Congress in Biology.

Joyce, A., & Javidroozi, V. (2024). Smart city development: Data sharing vs. data protection legislations. Cities, 148, 104859. https://doi.org/10.1016/j.cities.2024.104859

Al Amin, A., Hong, J., Bui, V.-H., & Su, W. (2023). Emerging 6G/B6G wireless communication for the power infrastructure in smart cities: Innovations, challenges, and future perspectives. Algorithms, 16(10), 474. https://doi.org/10.3390/a16100474

Khalil, U., Malik, O. A., Uddin, M., & Chen, C.-L. (2022). A comparative analysis on blockchain versus centralized authentication architectures for IoT-enabled smart devices in smart cities: A comprehensive review, recent advances, and future research directions. Sensors, 22(14), 5168. https://doi.org/10.3390/s22145168

Najafi, B., Najafi, A., Madanchi, F., Maghroor, H., & Taherdoost, H. (2024). The Impact of Cutting-Edge Technologies on Smart City Supply Chain: A Systematic Literature Review of the Evidence and Implications. IEEE Engineering Management Review. http://dx.doi.org/10.1109/EMR.2024.3373502

Hosseini, F., Ahmadi, A., Hassanzade, H., Gharedaghi, S., Rassouli, F. B., & Jamialahmadi, K. (2024). Inhibition of melanoma cell migration and invasion by natural coumarin auraptene through regulating EMT markers and reducing MMP-2 and MMP-9 activity. European Journal of Pharmacology, 971, 176517. https://doi.org/10.1016/j.ejphar.2024.176517

Camero, A., & Alba, E. (2019). Smart City and information technology: A review. Cities, 93, 84–94. https://doi.org/10.1016/j.cities.2019.04.014

Pencarelli, T. (2020). The digital revolution in the travel and tourism industry. Information Technology & Tourism, 22(3), 455–476. https://doi.org/10.1007/s40558-019-00160-3

Ji, X., Chen, J., & Zhang, H. (2024). Smart city construction empowers tourism: Mechanism analysis and spatial spillover effects. Humanities and Social Sciences Communications, 11(1), 1–14. https://doi.org/10.1057/s41599-024-03626-w

Azad, M., Hosseini, F., Hassanzade, H., Gharedaghi, S., Mahdipour, E., Rassouli, F. B., & Jamialahmadi, K. (2024). Galbanic acid suppresses melanoma cell migration and invasion by reducing MMP activity and downregulating N-cadherin and fibronectin. Naunyn-Schmiedeberg’s Archives of Pharmacology, 1–10. https://doi.org/10.1007/s00210-024-02981-4

Sánchez-Corcuera, R., Nuñez-Marcos, A., Sesma-Solance, J., Bilbao-Jayo, A., Mulero, R., Zulaika, U., Azkune, G., & Almeida, A. (2019). Smart cities survey: Technologies, application domains and challenges for the cities of the future. International Journal of Distributed Sensor Networks, 15(6), 155014771985398. https://doi.org/10.1177/1550147719853984

Babić, A., & Zron, A. (2024). Business Intelligence Tools in the Interpretation of the Ranking of Smart Cities. 2024 47th MIPRO ICT and Electronics Convention (MIPRO), 211–217. https://doi.org/10.1109/MIPRO60963.2024.10569892

Burns, R., Fast, V., Levenda, A., & Miller, B. (2021). Smart cities: Between worlding and provincialising. Urban Studies, 58(3), 461–470. https://doi.org/10.1177/0042098020975982

Dowling, R., McGuirk, P., Maalsen, S., & Sadowski, J. (2021). How smart cities are made: A priori, ad hoc and post hoc drivers of smart city implementation in Sydney, Australia. Urban Studies, 58(16), 3299–3315. https://doi.org/10.1177/0042098020986292

Ahmadirad, Z. (2024). Evaluating the influence of AI on market values in finance: Distinguishing between authentic growth and speculative hype. International Journal of Advanced Research in Humanities and Law, 1(2), 50–57. https://doi.org/10.63053/ijrel.11

Zhao, F., Fashola, O. I., Olarewaju, T. I., & Onwumere, I. (2021). Smart city research: A holistic and state-of-the-art literature review. Cities, 119, 103406. https://doi.org/10.1016/j.cities.2021.103406

Han, M. J. N., & Kim, M. J. (2024). A systematic review of smart city research from an urban context perspective. Cities, 150, 105027. https://doi.org/10.1016/j.cities.2024.105027

Naprathansuk, N. (2017). A national pilot project on smart city policy in Thailand: A case study on Phuket Khon Kaen Chiangmai Province. European Journal of Multidisciplinary Studies, 2(6), 337–346. http://dx.doi.org/10.26417/ejms.v6i1.p337-346

Kamnuansilpa, P., Laochankham, S., Crumpton, C. D., & Draper, J. (2020). Citizen awareness of the smart city: A study of Khon Kaen, Thailand. The Journal of Asian Finance, Economics and Business, 7(7), 497–508. http://dx.doi.org/10.13106/jafeb.2020.vol7.no7.497

Yan, Z., Jiang, L., Huang, X., Zhang, L., & Zhou, X. (2023). Intelligent urbanism with artificial intelligence in shaping tomorrow’s smart cities: Current developments, trends, and future directions. Journal of Cloud Computing, 12(1), 179. https://doi.org/10.1186/s13677-023-00569-6

Kumar, K., Singh, V., Raja, L., & Bhagirath, S. N. (2023). A review of parking slot types and their detection techniques for smart cities. Smart Cities, 6(5), 2639–2660. https://doi.org/10.3390/smartcities6050119

Papastefanopoulos, V., Linardatos, P., Panagiotakopoulos, T., & Kotsiantis, S. (2023). Multivariate Time-Series Forecasting: A Review of Deep Learning Methods in Internet of Things Applications to Smart Cities. Smart Cities, 6(5), 2519–2552. https://doi.org/10.3390/smartcities6050114

Shari, N. F. M., & Malip, A. (2022). State-of-the-art solutions of blockchain technology for data dissemination in smart cities: A comprehensive review. Computer Communications, 189, 120–147. https://doi.org/10.1016/j.comcom.2022.03.013

Alaeddini, M., Hajizadeh, M., & Reaidy, P. (2023). A Bibliometric Analysis of Research on the Convergence of Artificial Intelligence and Blockchain in Smart Cities. Smart Cities, 6(2), 764–795. https://doi.org/10.3390/smartcities6020037

Yu, Z., Song, L., Jiang, L., & Khold Sharafi, O. (2022). Systematic literature review on the security challenges of blockchain in IoT-based smart cities. Kybernetes, 51(1), 323–347. https://doi.org/10.1108/K-07-2020-0449

Moolngearn, P., & Kraiwanit, T. (2024). BARRIERS TO DEVELOPMENT OF SMART CITIES: LESSONS LEARNED FROM AN EMERGING ECONOMY. https://doi.org/10.22495/cbsrv5i2art22

Han, M. J. N., & Kim, M. J. (2021). A critical review of the smart city in relation to citizen adoption towards sustainable smart living. Habitat International, 108, 102312. https://doi.org/10.1016/j.habitatint.2021.102312

Haseli, G., Sheikh, R., Wang, J., Tomaskova, H., & Tirkolaee, E. B. (2021). A novel approach for group decision making based on the best–worst method (G-bwm): Application to supply chain management. Mathematics, 9(16), 1881. https://doi.org/10.3390/math9161881

Sepahi, T., Shahbazi, M., & Shafiei Roudposhti, M. (2020). Drug distribution system in Iran: A multi method study of defects and solutions. Depiction of Health, 11(4), 324–343. https://doi.org/10.34172/doh.2020.41

Sheykhfard, A., Haghighi, F., Saeidi, S., SafariTaherkhani, M., & Das, S. (2024). Understanding the influence of environmental factors on driver speed: A structural equation modeling analysis. IATSS Research, 48(3), 427–439. https://doi.org/10.1016/j.iatssr.2024.08.001

Hashemi, R., Farahi, M., Bagheri, R., Iranshahi, M., Torabinejad, S., Gharedaghi, S., & Soleymanifard, S. (2021). In vitro study of Radiosensitivity Effects of Galbanic Acid on ovarian tumor cells (OVCAR-3 cell line). Natural Product Communications, 16(10), 1934578X211046068. https://doi.org/10.1177/1934578X211046068

Durán-Sánchez, A., De La Cruz Del Río-Rama, M., Sereno-Ramírez, A., & Bredis, K. (2017). Sustainability and Quality of Life in Smart Cities: Analysis of Scientific Production. In M. Peris-Ortiz, D. R. Bennett, & D. Pérez-Bustamante Yábar (Eds.), Sustainable Smart Cities (pp. 159–181). Springer International Publishing. https://doi.org/10.1007/978-3-319-40895-8_12

Arneodo, F., Castelli, R., & Botta, D. (2017). Towards a “Smart Region” paradigm: Beyond Smart Cities borders: Piedmont Region experience. 2017 International Conference of Electrical and Electronic Technologies for Automotive, 1–8. https://doi.org/10.23919/EETA.2017.7993225

Halimi, Z., SafariTaherkhani, M., & Cui, Q. (2024). A Generalized Framework for Assessing Equity in Ground Transportation Infrastructure: An Exploratory Study (arXiv:2409.19018). arXiv. https://doi.org/10.48550/arXiv.2409.19018

Teich, T., Trommer, M., Börner, P., Härtel, T., Junghans, S., Leonhardt, S., Scharf, O., & Werner, P. (2017). Approach to develop innovative services through service networks by using ubiquitous infrastructures. 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 1–7. https://doi.org/10.1109/UIC-ATC.2017.8397500

Haseli, G., Torkayesh, A. E., Hajiaghaei-Keshteli, M., & Venghaus, S. (2023). Sustainable resilient recycling partner selection for urban waste management: Consolidating perspectives of decision-makers and experts. Applied Soft Computing, 137, 110120. https://doi.org/10.1016/j.asoc.2023.110120

Nezhad, M. Z., Nazarian-Jashnabadi, J., Rezazadeh, J., Mehraeen, M., & Bagheri, R. (2023). Assessing dimensions influencing IoT implementation readiness in industries: A fuzzy DEMA℡ and fuzzy AHP analysis. Journal of Soft Computing and Decision Analytics, 1(1), 102–123. https://doi.org/10.31181/jscda11202312

Nazarian-Jashnabadi, J., Bonab, S. R., Haseli, G., Tomaskova, H., & Hajiaghaei-Keshteli, M. (2023). A dynamic expert system to increase patient satisfaction with an integrated approach of system dynamics, ISM, and ANP methods. Expert Systems with Applications, 234, 121010. https://doi.org/10.1016/j.eswa.2023.121010

Mansourihanis, O., Maghsoodi Tilaki, M. J., Sheikhfarshi, S., Mohseni, F., & Seyedebrahimi, E. (2024). Addressing Urban Management Challenges for Sustainable Development: Analyzing the Impact of Neighborhood Deprivation on Crime Distribution in Chicago. Societies, 14(8), 139. https://doi.org/10.3390/soc14080139

Grecu, V., Ciobotea, R.-I.-G., & Florea, A. (2020). Software application for organizational sustainability performance assessment. Sustainability, 12(11), 4435. https://doi.org/10.3390/su12114435

Hanif, E., Hashemnejad, H., & Ghafourian, M. (2017). The concept of sustainable dwelling epitomized in the courtyards of Iranian houses: A case study of houses in Kashan in the Qajar Period. https://philpapers.org/rec/HANTCO-50

Haseli, G., Nazarian-Jashnabadi, J., Shirazi, B., Hajiaghaei-Keshteli, M., & Moslem, S. (2024). Sustainable strategies based on the social responsibility of the beverage industry companies for the circular supply chain. Engineering Applications of Artificial Intelligence, 133, 108253. https://doi.org/10.1016/j.engappai.2024.108253

Costa, J. T., & do Nascimento, R. P. C. (2023). ICT Governance Practices and Industry 4.0 Technologies in Support of Decision-Making in Brazilian Smart Cities in the Face of the COVID-19 Pandemic. IEEE Transactions on Computational Social Systems. https://doi.org/10.1109/TCSS.2023.3306707

Nazarian-Jashnabadi, J., Haseli, G., & Tomaskova, H. (2024). Digital transformation for the sustainable development of business intelligence goals. In Decision Support Systems for Sustainable Computing (pp. 169–186). Elsevier. https://doi.org/10.1016/B978-0-443-23597-9.00008-1

Attanasio, A., Cerquitelli, T., & Chiusano, S. (2016). Supporting the analysis of urban data through NoSQL technologies. 2016 7th International Conference on Information, Intelligence, Systems & Applications (IISA), 1–6. https://doi.org/10.1109/IISA.2016.7785334

Manesh, M. M., & Nabavi, E. T. (n.d.). Using System Dynamics to Scrutinize Behavioral Feedback Loops in Groundwater Management. Retrieved October 21, 2024. https://www.researchgate.net/profile/Mehdi-Moghadam-Manesh/publication

Rezazadeh, J., Bagheri, R., Karimi, S., Nazarian-Jashnabadi, J., & Nezhad, M. Z. (2023). Examining the impact of product innovation and pricing capability on the international performance of exporting companies with the mediating role of competitive advantage for analysis and decision making. Journal of Operations Intelligence, 1(1), 30–43. https://doi.org/10.31181/jopi1120232

Kazemi, A., Kazemi, Z., Heshmat, H., Nazarian-Jashnabadi, J., & Tomášková, H. (2024). Ranking factors affecting sustainable competitive advantage from the business intelligence perspective: Using content analysis and F-TOPSIS. Journal of Soft Computing and Decision Analytics, 2(1), 39–53. http://dx.doi.org/10.31181/jscda21202430

Haseli, G., & Sheikh, R. (2022). Base criterion method (BCM). In Multiple criteria decision making: Techniques, Analysis and Applications (pp. 17–38). Springer. https://doi.org/10.1007/978-981-16-7414-3_2

Nazarian-Jashnabadi, J., Ronaghi, M., alimohammadlu, M., & Ebrahimi, A. (2023). The framework of factors affecting the maturity of business intelligence. Business Intelligence Management Studies, 12(46), 1-39. https://doi.org/10.22054/ims.2023.74305.2346

Haseli, G., Sheikh, R., & Sana, S. S. (2020). Base-criterion on multi-criteria decision-making method and its applications. International Journal of Management Science and Engineering Management, 15(2), 79–88. https://doi.org/10.1080/17509653.2019.1633964

Farahani, S. D., Abadeh, A., Alizadeh, A., & Helforoush, Z. (2024). Artificial intelligence-based prediction of heat transfer enhancement in ferrofluid flow under a rotating magnetic field: Experimental study. Case Studies in Thermal Engineering, 58, 104442. https://doi.org/10.1016/j.csite.2024.104442

Dong, L., & Zhang, M. (2023). Commercial bank data asset quality evaluation model based on fermatean fuzzy TOPSIS. Procedia Computer Science, 221, 565–572. https://doi.org/10.1016/j.procs.2023.08.023

Haseli, G., Ranjbarzadeh, R., Hajiaghaei-Keshteli, M., Ghoushchi, S. J., Hasani, A., Deveci, M., & Ding, W. (2023). HECON: Weight assessment of the product loyalty criteria considering the customer decision’s halo effect using the convolutional neural networks. Information Sciences, 623, 184–205. https://doi.org/10.1016/j.ins.2022.12.027

Jashnabadi, J. N., Pooya, A., & Bagheri, R. (2023). Provide a model for budget policy in university-community communication programs with a system dynamics approach (case study: Ferdowsi University of Mashhad). J. Ind. Manag. Perspect, 13(1), 9–39. https://doi.org/10.48308/jimp.13.1.9

Amiri Sardari, Z., Abdoli Mohamadabadi, T., Nazarian-Jashnabadi, J., Tesoriere, G., & Campisi, T. (2024). Smart Experience and Green Health Tourism: The Moderating Role of Content Marketing. Sustainability, 16(11), 4546. https://doi.org/10.3390/su16114546

Published

2025-01-01

How to Cite

Majd, S. S. ., Maleki, A., Basirat, S. ., & Golkarfard, A. . (2025). Fermatean Fuzzy TOPSIS Method and Its Application in Ranking Business Intelligence-Based Strategies in Smart City Context. Journal of Operations Intelligence, 3(1), 1-16. https://doi.org/10.31181/jopi31202532