Enhancing Breast Cancer Diagnosis: A Comparative Evaluation of Machine Learning Algorithms Using the Wisconsin Dataset

Authors

DOI:

https://doi.org/10.31181/jopi31202539

Keywords:

Breast Cancer Detection, Machine Learning, Support Vector Machines, CatBoost, Gradian Boost, KNN, Wisconsin Dataset

Abstract

Breast cancer remains a leading cause of morbidity, particularly among women, underscoring the critical importance of early detection. In recent years, highly accurate machine learning algorithms have revolutionized breast cancer identification, significantly improving early diagnosis by analyzing tumor attributes to aid in detection and treatment decisions. This study evaluates seven machine learning algorithms using the Wisconsin breast cancer dataset, revealing that the Support Vector Machines (SVM) algorithm outperforms all others with an exceptional accuracy of 97.66%. These findings highlight the transformative potential of machine learning in clinical practice, offering healthcare professionals a powerful tool to enhance diagnostic precision, improve patient outcomes, and advance progress in oncology.

Downloads

Download data is not yet available.

References

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Klir, G. J., & Folger, T. A. (1988). Fuzzy sets, uncertainty, and information. Prentice Hall.

Mendel, J. M. (1995). Fuzzy logic systems for engineering: A tutorial. Proceedings of the IEEE, 83(3), 345-377. https://doi.org/10.1109/5.364485

Goguen, J. A. (1974). Concept representation in natural and artificial languages: Axioms, extensions and applications for fuzzy sets. International Journal of Man-Machine Studies, 6(5), 513-561.

Żywica, P. (2018). Modelling medical uncertainties with use of fuzzy sets and their extensions. In *Information processing and management of uncertainty in knowledge-based systems. Applications: 17th International Conference, IPMU 2018 (pp. 1-12). Springer.

Dubois, D., & Prade, H. (2012). Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets. Fuzzy Sets and Systems, 192, 3-24. https://doi.org/10.1016/j.fss.2010.11.007

Ramot, D., Milo, R., Friedman, M., & Kandel, A. (2002). Complex fuzzy sets. IEEE Transactions on Fuzzy Systems, 10(2), 171-186. https://doi.org/10.1109/91.995119

Yazdanbakhsh, O., & Dick, S. (2018). A systematic review of complex fuzzy sets and logic. Fuzzy Sets and Systems, 338, 1-22. https://doi.org/10.1016/j.fss.2017.01.010

Liu, P., Ali, Z., & Mahmood, T. (2020). The distance measures and cross-entropy based on complex fuzzy sets and their application in decision making. Journal of Intelligent & Fuzzy Systems, 39(3), 3351-3374. https://doi.org/10.3233/JIFS-191718

Sobhi, S., & Dick, S. (2023). An investigation of complex fuzzy sets for large-scale learning. Fuzzy Sets and Systems, 471, 108660. https://doi.org/10.1016/j.fss.2023.108660

Tamir, D. E., Rishe, N. D., & Kandel, A. (2015). Complex fuzzy sets and complex fuzzy logic an overview of theory and applications. In Fifty years of fuzzy logic and its applications (pp. 661-681). Springer. https://doi.org/10.1007/978-3-319-19683-1_31

Atanassov, K. T. (1999). Intuitionistic fuzzy sets. Physica-Verlag.

Burillo, P., & Bustince, H. (1995). Intuitionistic fuzzy relations (Part I). Mathware and Soft Computing, 2(1), 5-38.

Alkouri, A. M. D. J. S., & Salleh, A. R. (2012). Complex intuitionistic fuzzy sets. AIP Conference Proceedings, 1482(1), 464-470. https://doi.org/10.1063/1.4757515

Rahman, A. U., Ahmad, M. R., Saeed, M., Ahsan, M., Arshad, M., & Ihsan, M. (2020). A study on fundamentals of refined intuitionistic fuzzy set with some properties. Journal of Fuzzy Extension and Applications, 1(4), 279-292. https://doi.org/10.22105/jfea.2020.261946.1067

Yu, D., Sheng, L., & Xu, Z. (2022). Analysis of evolutionary process in intuitionistic fuzzy set theory: A dynamic perspective. Information Sciences, 601, 175-188. https://doi.org/10.1016/j.ins.2022.04.019

De, S. K., Biswas, R., & Roy, A. R. (2001). An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets and Systems, 117(2), 209-213. https://doi.org/10.1016/S0165-0114(98)00235-8

Liu, P. (2013). Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making. IEEE Transactions on Fuzzy Systems, 22(1), 83-97. https://doi.org/10.1109/TFUZZ.2013.2248736

Vlachos, I. K., & Sergiadis, G. D. (2007). Intuitionistic fuzzy information-applications to pattern recognition. Pattern Recognition Letters, 28(2), 197-206. https://doi.org/10.1016/j.patrec.2006.07.004

Li, D. F. (2005). Multiattribute decision making models and methods using intuitionistic fuzzy sets. Journal of Computer and System Sciences, 70(1), 73-85. https://doi.org/10.1016/j.jcss.2004.06.002

Nasir, A., Jan, N., Gumaei, A., Khan, S. U., & Al-Rakhami, M. (2021). Evaluation of the economic relationships on the basis of statistical decision-making in complex neutrosophic environment. Complexity, 2021, 5595474. https://doi.org/10.1155/2021/5595474

Nasir, A., Jan, N., Gumaei, A., Khan, S. U., & Albogamy, F. R. (2021). Cybersecurity against the loopholes in industrial control systems using interval-valued complex intuitionistic fuzzy relations. Applied Sciences, 11(16), 7668. https://doi.org/10.3390/app11167668

Garg, H., & Rani, D. (2020). Novel aggregation operators and ranking method for complex intuitionistic fuzzy sets and their applications to decision-making process. Artificial Intelligence Review, 53, 3595-3620. https://doi.org/10.1007/s10462-019-09772-x

Yager, R. R. (2013). Pythagorean membership grades in multicriteria decision making. IEEE Transactions on Fuzzy Systems, 22(4), 958-965. https://doi.org/10.1109/TFUZZ.2013.2278989

Yager, R. R. (2013). Pythagorean fuzzy subsets. In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) (pp. 57-61). IEEE. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375

Ullah, K., Mahmood, T., Ali, Z., & Jan, N. (2020). On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition. Complex & Intelligent Systems, 6, 15-27. https://doi.org/10.1007/s40747-019-0103-6

Peng, X., & Selvachandran, G. (2019). Pythagorean fuzzy set: State of the art and future directions. Artificial Intelligence Review, 52, 1873-1927. https://doi.org/10.1007/s10462-017-9596-9

Saikia, B., Dutta, P., & Talukdar, P. (2023). An advanced similarity measure for Pythagorean fuzzy sets and its applications in transportation problem. Artificial Intelligence Review, 56(11), 12689-12724. https://doi.org/10.1007/s10462-023-10421-7

Khan, M. J., Alcantud, J. C. R., Kumam, W., Kumam, P., & Alreshidi, N. A. (2023). Expanding Pythagorean fuzzy sets with distinctive radii: Disc Pythagorean fuzzy sets. Complex & Intelligent Systems, 9(6), 7037-7054. https://doi.org/10.1007/s40747-023-01062-y

Pan, L., Deng, Y., & Cheong, K. H. (2023). Quaternion model of Pythagorean fuzzy sets and its distance measure. Expert Systems with Applications, 213, 119222. https://doi.org/10.1016/j.eswa.2022.119222

Labassi, F., ur Rehman, U., Alsuraiheed, T., Mahmood, T., & Khan, M. A. (2024). A novel approach towards complex Pythagorean fuzzy sets and their applications in visualization technology. IEEE Access, 12, 12345-12360. https://doi.org/10.1109/ACCESS.2024.3393138

Akram, M., Zahid, K., & Kahraman, C. (2023). New optimization technique for group decision analysis with complex Pythagorean fuzzy sets. Journal of Intelligent & Fuzzy Systems, 44(3), 3621-3645. https://doi.org/10.3233/JIFS-220764

Yager, R. R. (2016). Generalized orthopair fuzzy sets. IEEE Transactions on Fuzzy Systems, 25(5), 1222-1230. https://doi.org/10.1109/TFUZZ.2016.2604005

Liu, P., Mahmood, T., & Ali, Z. (2019). Complex q-rung orthopair fuzzy aggregation operators and their applications in multi-attribute group decision making. Information, 11(1), 5. https://doi.org/10.3390/info11010005

Garg, H., Gwak, J., Mahmood, T., & Ali, Z. (2020). Power aggregation operators and VIKOR methods for complex q-rung orthopair fuzzy sets and their applications. Mathematics, 8(4), 538. https://doi.org/10.3390/math8040538

Peng, X., & Luo, Z. (2021). A review of q-rung orthopair fuzzy information: Bibliometrics and future directions. Artificial Intelligence Review, 54, 3361-3430. https://doi.org/10.1007/s10462-020-09926-2

Khan, M. J., Kumam, P., & Shutaywi, M. (2021). Knowledge measure for the q-rung orthopair fuzzy sets. International Journal of Intelligent Systems, 36(2), 628-655. https://doi.org/10.1002/int.22313

Demir Uslu, Y., Dinçer, H., Yüksel, S., Gedikli, E., & Yılmaz, E. (2022). An integrated decision-making approach based on q-rung orthopair fuzzy sets in service industry. International Journal of Computational Intelligence Systems, 15(1), 14. https://doi.org/10.1007/s44196-022-00069-6

Akram, M., Naz, S., & Ziaa, F. (2023). Novel decision-making framework based on complex q-rung orthopair fuzzy information. Scientia Iranica, 30(4), 1450-1479. https://doi.org/10.24200/sci.2021.55413.4209

Javeed, S., Javed, M., Shafique, I., Shoaib, M., Khan, M. S., Cui, L., & Alshamrani, A. M. (2024). Complex q-rung orthopair fuzzy Yager aggregation operators and their application to evaluate the best medical manufacturer. Applied Soft Computing, 157, 111234. https://doi.org/10.1016/j.asoc.2024.111532

Riaz, M., & Hashmi, M. R. (2019). Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems. Journal of Intelligent & Fuzzy Systems, 37(4), 5417-5439. https://doi.org/10.3233/JIFS-190550

Kamacı, H. (2022). Complex linear Diophantine fuzzy sets and their cosine similarity measures with applications. Complex & Intelligent Systems, 8(2), 1281-1305. https://doi.org/10.1007/s40747-021-00573-w

Ayub, S., Gul, R., Shabir, M., Hummdi, A. Y., Aljaedi, A., & Bassfer, Z. (2024). A novel approach to roughness of linear Diophantine fuzzy sets by fuzzy relations and its application towards multi-criteria group decision-making. IEEE Access, 12, 12345-12360. https://doi.org/10.1109/ACCESS.2024.3386581

Ayub, S., Shabir, M., Riaz, M., Aslam, M., & Chinram, R. (2021). Linear Diophantine fuzzy relations and their algebraic properties with decision making. Symmetry, 13(6), 945. https://doi.org/10.3390/sym13060945

Zia, M. D., Yousafzai, F., Abdullah, S., & Hila, K. (2024). Complex linear Diophantine fuzzy sets and their applications in multi-attribute decision making. Engineering Applications of Artificial Intelligence, 132, 107953. https://doi.org/10.1016/j.engappai.2024.107953

Guan, H., Yousafzai, F., Zia, M. D., Khan, M. U. I., Irfan, M., & Hila, K. (2022). Complex linear Diophantine fuzzy sets over AG-groupoids with applications in civil engineering. Symmetry, 15(1), 74. https://doi.org/10.3390/sym15010074

Published

2025-05-06

How to Cite

Cakmak, Y., & Pacal, I. (2025). Enhancing Breast Cancer Diagnosis: A Comparative Evaluation of Machine Learning Algorithms Using the Wisconsin Dataset. Journal of Operations Intelligence, 3(1), 175-196. https://doi.org/10.31181/jopi31202539