Transforming Preventive Healthcare with Machine Learning Technologies

Authors

DOI:

https://doi.org/10.31181/jopi31202538

Keywords:

Machine learning, Preventive healthcare, Early disease detection, Risk prediction, Health analytics

Abstract

In this paper, we explore the transformative role of machine learning (ML) in preventive healthcare (PHC), a proactive approach to health management that aims to prevent diseases and promote overall well-being. We begin by providing an overview of PHC, its importance, and its applications across various healthcare settings. The manuscript then presents a brief review of ML techniques in this field, examining their potential to revolutionize early disease detection, personalized risk assessment, and targeted interventions. We review key studies that demonstrate the capabilities of ML in areas such as cancer screening, cardiovascular risk prediction, population health management, and traditional medicine. By synthesizing current research and identifying future directions, this work aims to enhance the understanding of how ML is reshaping the PHC domain, potentially improving health outcomes and reducing healthcare costs.

Downloads

Download data is not yet available.

References

Karatas, M., Eriskin, L., Deveci, M., Pamucar, D., & Garg, H. (2022). Big data for healthcare industry 4.0: Applications, challenges and future perspectives. Expert Systems with Applications, 200, 116912. https://doi.org/10.1016/j.eswa.2022.116912

Subramanian, M., Wojtusciszyn, A., Favre, L., Boughorbel, S., Shan, J., Letaief, K. B., Pitteloud, N., & Chouchane, L. (2020). Precision medicine in the era of artificial intelligence: Implications in chronic disease management. Journal of Translational Medicine, 18(1), 1–12. https://doi.org/10.1186/s12967-020-02658-5

Trister, A. D., Buist, D. S., & Lee, C. I. (2017). Will machine learning tip the balance in breast cancer screening? JAMA Oncology, 3(11), 1463–1464. https://doi.org/10.1001/jamaoncol.2017.2763

Kinar, Y., Kalkstein, N., Akiva, P., Levin, B., Twito, A., Shalev, V., & Chodick, G. (2021). Development and validation of a predictive model for detection of colorectal cancer in primary care by analysis of complete blood counts. Journal of the American Medical Informatics Association, 28(1), 79–88. https://doi.org/10.1093/jamia/ocaa203

Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: Review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236–1246. https://doi.org/10.1093/bib/bbx044

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7

Brenner, H., & Chen, C. (2018). The colorectal cancer epidemic: Challenges and opportunities for primary, secondary and tertiary prevention. British Journal of Cancer, 119(7), 785–792. https://doi.org/10.1038/s41416-018-0264-x

Duo, X., & Zeshui, X. (2024). Machine learning applications in preventive healthcare: A systematic literature review. Artificial Intelligence in Medicine, 147, 102950. https://doi.org/10.1016/j.artmed.2024.102950

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z

Akselrod-Ballin, A., Chorev, M., Shoshan, Y., Spiro, A., Hazan, A., Melamed, R., Barkan, E., Herzel, E., Naor, S., & Karavani, E. (2019). Predicting breast cancer by applying deep learning to linked health records and mammograms. Radiology, 292(2), 331–342. https://doi.org/10.1148/radiol.2019190383

Lång, K., Dustler, M., Dahlblom, V., Andersson, I., & Zackrisson, S. (2020). Can artificial intelligence reduce the interval cancer rate in mammography screening? European Radiology, 30(3), 1419–1424. https://doi.org/10.1007/s00330-019-06559-0

Litjens, G., Sánchez, C. I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I., Hulsbergen-van de Kaa, C., Bult, P., van Ginneken, B., & van der Laak, J. (2016). Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Scientific Reports, 6(1), 26286. https://doi.org/10.1038/srep26286

McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A., et al. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94. https://doi.org/10.1038/s41586-019-1799-6

Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., Tse, D., Etemadi, M., Ye, W., Corrado, G., et al. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 25(6), 954–961. https://doi.org/10.1038/s41591-019-0447-x

Baughan, N., Douglas, L., & Giger, M. L. (2022). Past, present, and future of machine learning and artificial intelligence for breast cancer screening. Journal of Breast Imaging, 4(5), 451–459. https://doi.org/10.1093/jbi/wbac049

Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE, 12(4), e0174944. https://doi.org/10.1371/journal.pone.0174944

Attia, Z. I., Kapa, S., Lopez-Jimenez, F., McKie, P. M., Ladewig, D. J., Satam, G., Pellikka, P. A., Enriquez-Sarano, M., Noseworthy, P. A., Munger, T. M., et al. (2019). Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nature Medicine, 25(1), 70–74. https://doi.org/10.1038/s41591-018-0240-2

Mathur, P., Srivastava, S., Xu, X., & Mehta, J. L. (2020). Artificial intelligence, machine learning, and cardiovascular disease. Clinical Medicine Insights: Cardiology, 14, 1179546820927404. https://doi.org/10.1177/1179546820927404

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., et al. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402–2410. https://doi.org/10.1001/jama.2016.17216

Ting, D. S. W., Cheung, C. Y.-L., Lim, G., Tan, G. S. W., Quang, N. D., Gan, A., Hamzah, H., Garcia-Franco, R., San Yeo, I. Y., Lee, S. Y., et al. (2017). Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA, 318(22), 2211–2223. https://doi.org/10.1001/jama.2017.18152

Abramoff, M. D., Lavin, P. T., Birch, M., Shah, N., & Folk, J. C. (2018). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Medicine, 1(1), 39. https://doi.org/10.1038/s41746-018-0040-6

Alyoubi, W. L., Shalash, W. M., & Abulkhair, M. F. (2020). Diabetic retinopathy detection through deep learning techniques: A review. Informatics in Medicine Unlocked, 20, 100377. https://doi.org/10.1016/j.imu.2020.100377

Alsaleh, M. M., Allery, F., Choi, J. W., Hama, T., McQuillin, A., Wu, H., & Thygesen, J. H. (2023). Prediction of disease comorbidity using explainable artificial intelligence and machine learning techniques: A systematic review. International Journal of Medical Informatics, 175, 105088. https://doi.org/10.1016/j.ijmedinf.2023.105088

Uddin, S., Wang, S., Lu, H., Khan, A., Hajati, F., & Khushi, M. (2022). Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics. Expert Systems with Applications, 205, 117761. https://doi.org/10.1016/j.eswa.2022.117761

Luo, L., Yu, X., Yong, Z., Li, C., & Gu, Y. (2020). Design comorbidity portfolios to improve treatment cost prediction of asthma using machine learning. IEEE Journal of Biomedical and Health Informatics, 25(6), 2237–2247. https://doi.org/10.1109/JBHI.2020.3044156

Choi, E., Bahadori, M. T., & Sun, J. (2020). Learning low-dimensional representations of medical concepts. AMIA Summits on Translational Science Proceedings, 2020, 41. https://doi.org/10.1101/19004903

Kessler, R. C., Warner, C. H., Ivany, C., Petukhova, M. V., Rose, S., Bromet, E. J., Brown, M., Cai, T., Colpe, L. J., Cox, K. L., et al. (2015). Predicting suicides after psychiatric hospitalization in US army soldiers: The Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). JAMA Psychiatry, 72(1), 49–57. https://doi.org/10.1001/jamapsychiatry.2014.1754

Walsh, C. G., Ribeiro, J. D., & Franklin, J. C. (2017). Predicting risk of suicide attempts over time through machine learning. Clinical Psychological Science, 5(3), 457–469. https://doi.org/10.1177/2167702617691560

Reece, A. G., & Danforth, C. M. (2017). Instagram photos reveal predictive markers of depression. EPJ Data Science, 6(1), 15. https://doi.org/10.1140/epjds/s13688-017-0110-z

Chung, J., & Teo, J. (2022). Mental health prediction using machine learning: Taxonomy, applications, and challenges. Applied Computational Intelligence and Soft Computing, 2022, 9970363. https://doi.org/10.1155/2022/9970363

Ding, H., Li, N., Li, L., Xu, Z., & Xia, W. (2025). Machine learning-enabled mental health risk prediction for youths with stressful life events: A modelling study. Journal of Affective Disorders, 368, 537–546. https://doi.org/10.1016/j.jad.2025.01.123

Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., Ben-Yacov, O., Lador, D., Avnit-Sagi, T., Lotan-Pompan, M., et al. (2015). Personalized nutrition by prediction of glycemic responses. Cell, 163(5), 1079–1094. https://doi.org/10.1016/j.cell.2015.11.001

Althoff, T., Sosic, R., Hicks, J. L., King, A. C., Delp, S. L., & Leskovec, J. (2017). Large-scale physical activity data reveal worldwide activity inequality. Nature, 547(7663), 336–339. https://doi.org/10.1038/nature23018

Irandoust, K., Parsakia, K., Estifa, A., Zoormand, G., Knechtle, B., Rosemann, T., Weiss, K., & Taheri, M. (2024). Predicting and comparing the long-term impact of lifestyle interventions on individuals with eating disorders in active population: A machine learning evaluation. Frontiers in Nutrition, 11, 1390751. https://doi.org/10.3389/fnut.2024.1390751

Islam, M. M., & Shamsuddin, R. (2021). Machine learning to promote health management through lifestyle changes for hypertension patients. Array, 12, 100090. https://doi.org/10.1016/j.array.2021.100090

Nemati, S., Holder, A., Razmi, F., Stanley, M. D., Clifford, G. D., & Buchman, T. G. (2018). An interpretable machine learning model for accurate prediction of sepsis in the ICU. Critical Care Medicine, 46(4), 547–553. https://doi.org/10.1097/CCM.0000000000002936

Labovitz, D. L., Shafner, L., Reyes Gil, M., Virmani, D., & Hanina, A. (2017). Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy. Stroke, 48(5), 1416–1419. https://doi.org/10.1161/STROKEAHA.116.016368

Koesmahargyo, V., Abbas, A., Zhang, L., Guan, L., Feng, S., Yadav, V., & Galatzer-Levy, I. R. (2020). Accuracy of machine learning-based prediction of medication adherence in clinical research. Psychiatry Research, 294, 113558. https://doi.org/10.1016/j.psychres.2020.113558

Bohlmann, A., Mostafa, J., Kumar, M., et al. (2021). Machine learning and medication adherence: Scoping review. JMIRx Med, 2(4), e26993. https://doi.org/10.2196/26993

Payyappallimana, U. (2010). Role of traditional medicine in primary health care: An overview of perspectives and challenging. Yokohama Journal of Social Sciences, 14(6), 57–77. https://doi.org/10.1177/2158244010387431

Chen, H., & He, Y. (2022). Machine learning approaches in traditional Chinese medicine: A systematic review. The American Journal of Chinese Medicine, 50(1), 91–131. https://doi.org/10.1142/S0192415X22500042

Zhao, C., Li, G.-Z., Wang, C., & Niu, J. (2015). Advances in patient classification for traditional Chinese medicine: A machine learning perspective. Evidence-Based Complementary and Alternative Medicine, 2015, 376716. https://doi.org/10.1155/2015/376716

Zheng, Y.-J., Yu, S.-L., Yang, J.-C., Gan, T.-E., Song, Q., Yang, J., & Karatas, M. (2020). Intelligent optimization of diversified community prevention of COVID-19 using traditional Chinese medicine. IEEE Computational Intelligence Magazine, 15(4), 62–73. https://doi.org/10.1109/MCI.2020.3019875

Tian, S., Wang, J., Li, Y., Xu, X., & Hou, T. (2012). Drug-likeness analysis of traditional Chinese medicines: Prediction of drug-likeness using machine learning approaches. Molecular Pharmaceutics, 9(10), 2875–2886. https://doi.org/10.1021/mp300222d

Wang, Y., Jafari, M., Tang, Y., & Tang, J. (2019). Predicting meridian in Chinese traditional medicine using machine learning approaches. PLoS Computational Biology, 15(11), e1007249. https://doi.org/10.1371/journal.pcbi.1007249

Santillana, M., Nguyen, A. T., Dredze, M., Paul, M. J., Nsoesie, E. O., & Brownstein, J. S. (2015). Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Computational Biology, 11(10), e1004513. https://doi.org/10.1371/journal.pcbi.1004513

Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012–1014. https://doi.org/10.1038/nature07634

Singh, R., & Singh, R. (2023). Applications of sentiment analysis and machine learning techniques in disease outbreak prediction–a review. Materials Today: Proceedings, 81, 1006–1011. https://doi.org/10.1016/j.matpr.2023.04.567

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., et al. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1(1), 18. https://doi.org/10.1038/s41746-018-0029-1

Takura, T., Hirano Goto, K., & Honda, A. (2021). Development of a predictive model for integrated medical and long-term care resource consumption based on health behaviour: Application of healthcare big data of patients with circulatory diseases. BMC Medicine, 19(1), 1–16. https://doi.org/10.1186/s12916-021-02041-1

Nsoesie, E. O., Brownstein, J. S., Ramakrishnan, N., & Marathe, M. V. (2014). A systematic review of studies on forecasting the dynamics of influenza outbreaks. Influenza and Other Respiratory Viruses, 8(3), 309–316. https://doi.org/10.1111/irv.12226

Published

2025-04-07

How to Cite

Karatas, M., Zare, Z., & Zheng, Y.-J. . (2025). Transforming Preventive Healthcare with Machine Learning Technologies. Journal of Operations Intelligence, 3(1), 109-125. https://doi.org/10.31181/jopi31202538