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Sugarcane is a crucial agricultural crop, providing 75% of the world's sugar 
production. Like all plant species, any disease that affects sugarcane can 
significantly impact yield and planning. Traditional manual methods for 
diagnosing diseases in sugarcane leaves are slow, inefficient, and often lack 
accuracy. In this study, we present a deep learning-based approach for the 
robust detection of diseases in sugarcane leaves. Specifically, we trained 
and evaluated models from the EfficientNetv1 and EfficientNetv2 
architectures, which are among the most notable convolutional neural 
network (CNN) architectures, using the publicly available Sugarcane Leaf 
Dataset. This dataset includes 11 disease classes and a total of 6,748 images. 
Additionally, we compared these models with other popular CNN models. 
Our findings reveal that there is no direct correlation between model 
complexity, depth, and accuracy for the 11-class sugarcane dataset. Among 
the 13 models tested, EfficientNet-b6 and InceptionV4 achieved the highest 
accuracy rates of 93.39% and 93.10%, respectively. These results have a 
significant impact on how managers can manage diseases and the 
agricultural processes of sugarcane production. A deep learning-based 
disease detection system facilitating the diagnostic process can, in turn, 
result in more accurate and faster identification of diseases. This may 
enable farmers and agricultural managers to make timely and informed 
decisions, reducing crop loss and enhancing overall yield. These findings 
highlight the potential of deep learning in developing fast, accurate, and 
automatic disease diagnosis systems, which can significantly improve 
disease management and increase sugarcane yield. 

 
Keywords: 
Artificial intelligence; Deep-Learning; CNN; 
Plant diseases. 

 

 
1. Introduction 

Agriculture is an important source of income for rural people in developing countries. However, 
agricultural productivity needs to be increased to meet the food needs of the increasing population 
[1]. However, the agricultural sector faces various challenges such as plant diseases, pests, and 
changing weather conditions. Changing weather conditions accelerate the spread of diseases, 
increasing concerns about food safety. 
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The main reason for this study arises from the requirements of better results in sugar agriculture, 
for instance, the early and more accurate diagnosis of diseases. Since sugar production is of 
significant financial importance, the on-time and accurate diagnosis of diseases is the key point for 
the improvement of yield and efficient resource distribution. The traditional techniques are time-
consuming and can lead to human mistakes; therefore, the need for the new solutions that can work 
automatically and give accurate and fast information is inevitable. 

Plant diseases pose a serious threat to agricultural production. The sensitivity of agriculture to 
climate is affected by temperature, precipitation, wind speed and extreme climatic events such as 
drought, heavy rainfall, hail, and hurricanes. These events can reduce harvests and destroy soil [2]. 
In particular, the damage caused by plant diseases can be reduced with early diagnosis, but this early 
diagnosis may be difficult with manual methods. Plant diseases usually start on the lower leaves and 
spread throughout the crop. Therefore, visual monitoring of leaf diseases in particular rapid detection 
of diseases and prevention of their spread are critical. Artificial intelligence (AI) and classification 
methods can help automate this process. AI, especially machine learning and convolutional neural 
networks (CNNs), can boost precision agriculture by effectively detecting and classifying pests with 
minimal labor. 

In recent years, artificial intelligence techniques have been used to develop expert systems in 
problem-solving and decision-making. Image processing techniques analyze pixel regions to identify 
patterns and create algorithms that detect behavioral trends. As a sub-branch of artificial 
intelligence, deep learning is a feature extraction and classification technique with high adaptability 
and shows significant potential in agriculture. 

Diagnostic methods traditionally based on visual inspections are laborious, costly and relatively 
less sensitive, and can lead to significant yield losses, especially for rural farmers. Recently, the use 
of non-invasive methods has attracted attention and allows automatic, fast and accurate solutions 
[3]. Among these solutions, image processing techniques stand out because they achieve promising 
results in disease detection and management by utilizing advanced cameras equipped with sensitive 
sensors. Developments in existing technologies have increased and improved the use of technology 
in every field [4]. This technological integration promotes sustainability, while automated systems 
reduce environmental impact by minimizing resource waste. The continuation of these trends leaves 
autonomous agriculture to play a vital role in meeting global food production needs and addressing 
challenges such as climate change and resource scarcity [5].  

Deep learning algorithms are increasingly used to diagnose and identify diseases in areas such as 
healthcare and agriculture. The introduction of these technologies in agriculture is an important step 
towards increasing yields and ensuring food security and sustainability. Advances in deep learning 
and plant disease diagnosis are particularly important for the sustainability of agriculture. The use of 
advanced technologies and methods can increase productivity and promote economic growth by 
enabling early diagnosis of diseases [6,7]. Significant advances in agricultural practices through the 
use of deep learning models have increasingly increased the importance of research in this area. 
 
2. Related Works  

In recent years, significant advances have been made in the fields of deep learning and plant 
disease diagnosis. The success of CNN and ViT models in natural language processing has drawn 
attention to this field [8].  Hamuda et al. [9] developed an algorithm for automatic product detection, 
which was used to identify broccoli in video streams under various weather conditions and natural 
lighting. The identification results were compared with manually labeled ground truth data, achieving 
an accuracy of 99.04% and a precision of 98.91%. Akbarzadeh et al. [10] proposed a method based 
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on support vector machines for plant classification. Experimental findings demonstrated that the 
proposed algorithm successfully classified plants with an accuracy rate of 97%.  Hoang Trong et al. 
[11] introduced a novel approach for weed classification using multimodal deep learning models like 
Inception-ResNet, MobileNet, NASNet, ResNet, and VGG. They achieved over 98.7% accuracy, 
enabling real-time weed classification. Structured data extracted from hyperspectral data was used 
for conducting experiments, where images were employed to identify cotton, sugarcane, and 
mulberry crops [12]. It was found that deep learning CNN achieved an accuracy of 99.33%, whereas 
deep FFNN achieved 96.6% accuracy. Hashemi-Beni et al. [12] investigated the use of aerial imagery 
to classify weeds and crops using DL architectures such as U-Net, SegNet, FCNs, and DepLabV3+. 
Among these, DepLabV3+ achieved the highest accuracy of 84.3%. Veziroglu et al. [13] evaluated 
VGG, ResNet, DenseNet, EfficientNet, Inception, and Xception on the publicly available Paddy Doctor 
dataset. In the study, the EfficientNetv2_Small model was found to perform better than all models 
with 98.01% test accuracy and 97.99% F1-score values.  Another study used DenseNet, ResNet50 and 
MobileNet architectures to detect diseases occurring in tomato leaves. The results provided the best 
performance by the DenseNet model and an accuracy of 0.9900 was achieved [14]. Pacal [15] used 
28 CNN models and 36 ViT models on the newly created dataset, combining the PlantVillage, 
PlantDoc, and CD&S datasets. And achieved accuracy rate of 99.24%. These methods have been 
recently utilized to visualize lesions on products such as guava [16], tea [17], and apple [18]. Goluguri 
et al. [19] also developed a neural network to predict rice blast disease using meteorological 
parameters such as wind speed, temperature, rainfall, and relative humidity. 

Sugarcane belongs to the Poaceae family has high sucrose sugar and is used in the production of 
by-products such as white sugar, jaggery (palm sugar), and molasses. 75% of world sugar production 
is obtained from sugar cane. Thanks to its alkaline structure, sugar cane juice reduces the risk of 
prostate and breast cancer, supports liver and kidney functions, and regulates blood pressure. 
However, sugarcane is susceptible to disease outbreaks, which significantly reduces yields [20]. 
Monitoring plant health is vital for effective planting. Deep learning and image processing techniques 
can detect diseased leaves, stems, fruits and other affected areas. Many deep learning algorithms 
are used to distinguish diseased and healthy plants. 

Militante & Gerardo [21] evaluated different CNN models for predicting sugarcane disease types 
using RGB images of sugarcane leaves. The study analyzed three CNN models—LeNet, VGGNet, and 
StridedNet—on a dataset comprising 7 classes (1 healthy crop and 6 disease classes). StridedNet 
achieved an accuracy of 90.10%, LeNet achieved 93.65%, and VGGNet achieved the highest accuracy 
of 95.40%. A simple CNN model used by the study tested a DL model on a large dataset of sugarcane 
leaves and achieved an accuracy of 95% [22]. The study included three scenarios using various feature 
extractors: Inception v3, VGG-16, and VGG-19 [23]. The accuracy was evaluated using the receiver 
operating characteristic (ROC) curve. VGG-16 is used as the feature extractor, achieving an accuracy 
of 90.2%, with SVM as the classifier. In their study, models achieved a peak accuracy of 93.40% on 
the test set and 76.40% on images sourced from various reputable online platforms [24]. Two distinct 
object-detection algorithms, YOLO and Faster R-CNN, were employed and evaluated on our dataset, 
achieving a top mean average precision score of 58.13% on the test set. The method utilized a CNN 
trained on approximately 3000 leaf images to function as an image classifier [25]. The model achieved 
an accuracy of 96%. An Android application is also developed as a user interface for this model. Kai 
et al. [26] developed a methodology to differentiate sugarcane varieties using a dense neural 
network. The number of hidden layers was determined using the greedy layer-wise method, each 
containing multiples of four neurons. By comparing the results the SVM model showed the highest 
precision of 99.55%. Grijalva et al. [27] proposed a framework and two models for the automatic 
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categorization of aphid infestation on sugarcane leaves using digital imagery and deep-learning 
CNNs. The models classify images into six levels of sugarcane aphid densities at the leaf level, 
achieving an accuracy of 86% with Inception v3 and Xception models.  Li et al. [28] introduced a 
lightweight hybrid deep learning model designed for fast and accurate detection of sugarcane 
diseases. Trained initially on the Plant Village Dataset and fine-tuned on a custom dataset with 2095 
images of six common sugarcane diseases and healthy sugarcane, this model demonstrated slightly 
higher accuracy and faster performance compared to other deep learning models. Ribeiro et al. [29] 
tested DarkNet53 for identification with an independent 200 images dataset and obtained 96.6% 
accuracy compared. 

Different researchers have developed methods for the classification of sugarcane disease using 
image processing techniques to extract the characteristics of plants and recognize the presence of 
disease [20,30]. The structure of color transformation has been employed to analyze texture in plant 
leaves and diseases. Arivazhagan et al. [31] used Gabor's filter and segmentation on the leaves, and 
then a network of artificial neurons (ANN) was trained to differentiate between classes. Bashir & 
Sharma [32] provided a discrete transform algorithm with a specific wavelength was employed to 
identify the presence of sugarcane diseases, and they used the tree of decision to classify images. 
The Elementary Learning Machine (ELM) predicted the growth of sugarcane in various areas and had 
superior performance compared to traditional ANN methods [33]. 

 
3. Methodology  

In this study, a holistic strategy was followed which included a deep learning approach to the 
detection of diseases on sugarcane leaves. We utilized the Sugarcane Leaf Dataset, which is openly 
available. The data augmentation techniques were used for dataset preprocessing which made the 
model more robust. During the study, we trained and assessed several models of the EfficientNet 
architecture, which were EfficientNet-b0 through EfficientNet-b7, as well as EfficientNetv2-small, 
EfficientNetv2-medium, and EfficientNetv2-large. The model also utilized transfer learning which 
helped in utilizing pre-trained weights to improve model performance. We did the model's 
performance comparison on accuracy rates challenging by diving into the depth and complexity of 
the model. The evaluation metrics were the accuracy and other indicators related to the treatment 
of the data and these were implemented to evaluate the most effective model in the detection of 
diseases in sugarcane (Figure 1). 

 
Fig. 1. General approach for classification 
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3.1 Dataset 
Data sets are crucial in both machine learning and deep learning, serving as vital resources that 

offer rich visual information. These datasets enable researchers, developers, and professionals to 
train and validate their models, algorithms, and theories effectively. In particular, image datasets 
focusing on agriculturally specific plants hold significant importance. They provide invaluable tools 
for researchers and farmers to identify, classify, and study various diseases impacting their crops. 
Through the analysis of these images, experts can create more precise disease detection algorithms 
and early warning systems, thereby accelerating disease management and preventing extensive crop 
damage and yield loss. 

 
Fig. 2. Examples of leaf images in the sugarcane leaf dataset 
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The Sugarcane Leaf Dataset consists of 6748 high-resolution sugarcane leaf images. There are 11 
categories of diseases in total, dried leaves and healthy leaves [34]. It classifies a variety of common 
foliar diseases, providing easy access and identification of specific disease examples. Using these 
images, diseases caused by sugarcane leaves can be detected. In this study, it was aimed to classify 
diseases using these images. Figure 2 shows examples of leaf classes in the sugarcane leaf dataset. 
This dataset includes Banded Chlorosis, Brown Rust, Brown Spot, Grassy Shoot, Pokkah boeng, Sett 
Rot, Smut, Viral Disease, Yellow Leaf diseases, and Dried Leaves, Healthy Leaves plant leaf images.  

 
Table 1 
Sugarcane’s categories and number of images 

Categories Train(70%) Validation(15%) Test(15%) The Number of Images 

Banded Chlorosis 330 71 70 471 

Brown Rust 220 47 47 314 

Brown Spot 1205 258 259 1722 

Grassy Shoot 242 52 52 346 

Pokkah boeng 208 45 44 297 

Sett Rot 456 98 98 652 

Smut 221 47 48 316 

Viral Disease 464 99 100 663 

Yellow Leaf 836 179 179 1194 

Dried Leaves 240 51 52 343 

Healthy Leaves 301 64 65 430 

Total Number of Images 4723 1011 1014 6748 

 
We encounter Pokkah Boeng disease with at least 297 images, and Brown Spot disease with the 

most 1722 images. The number of dried leaf images is 343 and the number of healthy leaf images is 
430. As in common measurements, the data set is divided into train 70%, validation 15%, and test 
15% (Table 1). By dividing it in this way, healthier results were tried to be obtained. 

 
3.2 Transfer Learning 

Transfer learning is a technique that aims to shorten training time and increase performance by 
using the knowledge (weights) of a deep learning model trained for a task on a similar or different 
problem. Instead of building a new model from scratch for a problem, we can adapt it to the new 
problem using the knowledge of a pre-trained model. Pre-trained convolutional neural networks such 
as ResNet and EfficientNet have learned rich feature hierarchies from large and diverse image 
datasets. This way, we can achieve faster and better results using less data and computational 
resources. 

Especially if you do not have access to large amounts of data, transfer learning offers you the 
opportunity to obtain better results with less data. It can train the model faster by using the 
knowledge of a pre-trained model. Transfer learning can enable the model to generalize better to 
new problems. To apply transfer learning, all weights of the trained model are frozen and only the 
final layers are fine-tuned for the new problem. In this way, a model trained for more than one task 
is used and the information of this model is used for the new problem.  
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3.3 Deep Learning 
Deep learning leverages computational models and algorithms composed of multiple layers to 

analyze data. These techniques can identify intricate patterns in extensive datasets and learn through 
algorithms, representing the pinnacle of technology advancements in various domains such as 
speech recognition, image recognition, and object detection. While deep convolutional networks are 
crucial for tasks like image, video, speech, and audio processing, recurrent networks facilitate the 
analysis of sequential data, including text and speech [35]. Deep learning architectures have achieved 
outstanding outcomes in object recognition. They are also utilized in pattern recognition, detection, 
classification, predictive analytics, drug development, lexicon creation, signal processing, and 
applications in the medical, financial, and defense sectors. Research indicates that deep learning 
frameworks yield significantly superior results compared to other established methods [14]. 
 
3.4 CNN 

CNN, which we commonly encounter in image processing, is a critical artificial neural network 
model in the field of deep learning. This network model has a special structure consisting of 
convolutional, pooling and fully connected layers. It works by applying these layers to input data. 
Convolutional layers create a new matrix that identifies features from the data by looping the filter 
over the image converted into numerical matrices (Figure 3). Pooling layers preserve these features 
and reduce the size of the output. These processes repeat, and then, when it reaches the fully 
connected layer, it uses this processed data in classification or prediction tasks. 

 
Fig. 3. Feature map extraction in CNN with filter 

 
Training of CNN is carried out by optimizing the parameters by minimizing the error function, 

which improves the performance of the network. Therefore, CNN stands out as an effective model 
to achieve high accuracy rates in the fields of image processing and recognition. In structure, CNN 
consists of a convolutional layer that determines features using filters, an activation function that 
provides non-linear transformation of convolutional outputs, a pooling layer that preserves features 
while minimizing the output, and fully connected layers used for classification or prediction (Figure 
4). During the training process, the fully connected layers following the convolution, activation and 
pooling layers perform the learning process by minimizing the error function between the predicted 
and the real values. This article focuses on EfficientNet models. DenseNet121, ResNet50, InceptionV3 
models were included in the study for performance measurement. 
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Fig. 4. CNN standard architecture (Kunduracioglu & Pacal, 2024) 

 
ResNet alleviates the vanishing gradient problem encountered when training very deep neural 

networks [36]. ResNet architecture is a structure that enables deep neural networks with hundreds 
or even thousands of layers to achieve effective performance by using skip connections between 
layers. It was proposed to solve the problems of not learning identity maps and corruption and is 
based on a network architecture consisting of convolution and pooling layers as the building blocks 
of the network. ResNet uses 3x3 filters like VGG16 and processes input images with a size of 224x224 
pixels. 

Inception v4, proposed by Szegedy et al. [37], is a neural network architecture that aims to reduce 
computational cost with innovations over previous Inception architectures. Specific techniques 
employed to reduce computational cost include factorized convolutions, regularization, dimension 
reduction, and parallel computations. Developed by Google, Inception v3 is the third release in the 
Deep Learning Evolutionary Architectures series. After the development of Inception V1 and the 
application of batch normalization in Inception V2, the idea of factorization was introduced in 
Inception v3. The primary goal of factorization is to reduce the number of connections and 
parameters without reducing the efficiency of the network. The model itself consists of symmetric 
and asymmetric building blocks containing convolutions, average pooling, max pooling, concats, 
dropouts, and fully connected layers. Inception V4 was fine-tuned using pre-trained weights from 
ImageNet. A new model was also created and defined with an average pooling layer (8x8), dropout 
and softmax in the upper layer. 
 
3.5 EfficientNet 

EfficientNet is a convolutional neural network architecture and scaling technique that scales 
depth, width, and resolution dimensions evenly using a compound coefficient [38]. The EfficientNet 
family is built upon an optimized base architecture and an effective scaling strategy. More than a 
million photos from the ImageNet database are used to train EfficientNet-b0.  
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Fig. 5. EfficientNet-b0 architecture [38] 

 
Typically, image classification accuracy is increased by feeding the network with higher resolution 

images that contain more and finer details, widening the network by adding more filters to each 
layer, and deepening an already-existing network by adding more layers through which data is passed 
(Figure 5). EfficientNets increases accuracy by scaling these three components together and 
designing a ratio that prevents any of them from becoming a bottleneck. By scaling EfficientNet-b0 
in this way, the EfficientNet-b4 network with approximately four times more processing power is 
produced [38]. 
 
4. Results 

It compares performance metrics for Resnetv2-50 and Inception-V4 models as well as EfficientNet 
models (Table 2). When the given metrics are examined, the EfficientNet-b6 model shows the highest 
performance in terms of all metrics. However, it requires more computational resources due to the 
high number of parameters. The Inception-v4 model is notable because it provides high accuracy and 
good balance. The EfficientNet-b0 model offers a good accuracy rate with few parameters, indicating 
that it may be suitable for situations with limited computational resources. 
 

Table 2 
The performance measures of classification by EfficientNet and other models 

Model Params Acc Precision Recall F1-score 

EfficientNet-b0 4.01m 0.9260 0.8953 0.8942 0.8911 

EfficientNet-b1 6.53m 0.9132 0.8776 0.8712 0.8712 

EfficientNet-b2 7.72m 0.9280 0.8972 0.9010 0.8984 

EfficientNet-b3 10.71m 0.9290 0.9000 0.8948 0.8933 

EfficientNet-b4 17.57m 0.9290 0.9031 0.8986 0.8931 

EfficientNet-b5 28.36m 0.9053 0.8764 0.8571 0.8640 

EfficientNet-b6 40.76m 0.9339 0.9258 0.9071 0.9094 

EfficientNet-b7 63.82m 0.9280 0.8995 0.9023 0.8956 

EfficientNetv2-small 20.19m 0.9300 0.9068 0.9081 0.9036 

EfficientNetv2-medium 52.87m 0.9211 0.8900 0.8900 0.8868 

EfficientNetv2-large 117.25m 0.9014 0.8876 0.8882 0.8822 

ResNetv2-50 23.52m 0.9260 0.9887 0.8907 0.8916 

Inception-v4 41.16m 0.9310 0.9123 0.8920 0.8940 

 
If we look at what the given metrics mean; parameters indicate the total number of parameters 

of the model and determine the complexity and computational requirements of the model. 
EfficientNet-b0 has the fewest parameters (4.01m) while EfficientNetv2-large has the most 
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parameters (117.25m). Increasing the number of parameters generally increases the computational 
cost and memory requirements of the model. Accuracy refers to the proportion of samples that the 
model predicts correctly overall. The EfficientNet-b6 (0.9339) and Inception-v4 (0.9310) models have 
the highest accuracy rate. This shows that these models perform quite well on the dataset. On the 
other hand, EfficientNetv2-large has the lowest accuracy rate (0.9014), indicating that the model is 
less successful than others. Precision measures the accuracy of the model's positive predictions and 
is high when false positives are few. The highest precision is seen in the ResNetv2-50 model with 
0.9887. This shows that the model minimizes false positives. EfficientNet-b5, on the other hand, has 
the lowest precision (0.8764), indicating that the model makes more errors in its positive predictions. 
Sensitivity refers to the rate at which the model correctly predicts true positives and is high when 
false negatives are few. EfficientNet-b6 has the highest sensitivity with 0.9071 recall, indicating that 
the model successfully detects true positives. EfficientNet-b5, on the other hand, has the lowest 
sensitivity with 0.8571 recall, which means the model misses some positives. The F1-score measures 
the balance between precision and sensitivity and is the harmonic mean of the two. The highest F1-
score is seen in the EfficientNet-b6 (0.9094) model. This indicates that the overall performance of the 
model is quite stable. EfficientNet-b5 has the lowest F1 score (0.8640), indicating that the model is 
less balanced between precision and sensitivity. 

This analysis can help select the most appropriate model depending on a particular use case. 
While models such as EfficientNet-b6 are preferred for situations requiring higher accuracy and F1 
score, lighter models such as EfficientNet-b0 can be preferred in cases where computational 
resources are limited. In addition, although the accuracy rate is expected to increase as model 
complexity increases, it has been determined that there is no such relationship between the models. 
This shows that complexity is not directly proportional to accuracy. However, it is thought that this 
result was reached due to the small size of the data set. Different results may be obtained in larger 
data sets. 

Confusion matrix is a table of metrics used to evaluate the performance of the classification 
model. This matrix shows the relationship between the actual classes and the classes predicted by 
the model. Often used in classification problems, the confusion matrix forms the basis for calculating 
the model's accuracy, sensitivity, specificity, and performance metrics such as recall and F1-score. 

The number of true positives is the number of positive examples that the model predicted 
correctly. The number of true negatives is the number of negative examples that the model predicted 
correctly. The number of false positives is the number of samples that the model predicted as positive 
but were actually negative. The number of false negatives is the number of examples that the model 
predicted as negative but were actually positive. These four values indicate how correctly or 
incorrectly the model predicted each class. Confusion matrix is crucial to understanding the 
performance of the model and is used in developing and tuning classification models. As seen in 
Figure 6, EfficientNetV2-S and InceptionV4 have high TP rates and low FP and FN errors. However, 
ResNetV2-50 and EfficientNet-B6 make more FP and FN errors. Differences were seen between 
classes; some classes (e.g. Smut) are generally predicted with low accuracy across all models, while 
others (e.g. Grassy_S) are predicted with high accuracy across all models. Each model has its 
strengths and weaknesses; which model to use may depend on the performance on a particular class 
or feature set. 

Table 3 evaluates the performance of the EfficientNet_b6 model for the identification of 
sugarcane diseases and healthy plants according to the classes in the dataset. The report measures 
the performance of the model on different classes with accuracy, sensitivity, F1 score and number of 
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images used for each class. These metrics are used to understand how well the model identifies 
certain classes. 

 
Fig. 6. Confusion matrices for some models 

 
Although the accuracy of the model is relatively low for Banded, the sensitivity is high. These 

results indicate that the model accurately identifies this class, but its overall performance is slightly 
lower. In the Brown_R class, the model exhibits a very high performance. Accuracy, sensitivity, and 
F1-score are very high, indicating that the model correctly identifies this class. Although the accuracy 
of the model is high in the Brown_S class, the sensitivity is quite low. This indicates that the model 
had difficulty recognizing this class and missed some positive examples. In the Grassy_R class, the 
model shows near-perfect performance. Sensitivity and F1-score are very high, indicating that the 
model correctly identifies all positive examples. Although the accuracy of the model is high in the 
Pokkah_B class, the sensitivity is low. This means that the model missed some positive examples. In 
the Sett_R class, the model shows excellent performance. All metrics are 1.00 (Table 3), indicating 
that the model completely and accurately describes this class. In the Smut class, the sensitivity of the 
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model is very high, which indicates that the model correctly identifies all positive examples. However, 
the accuracy is lower, which indicates that the model produces some false positives. The model's 
accuracy and F1 score are high in the viral class. Although the sensitivity is relatively high, it misses 
some positive examples. The model in the Yellow class shows very high performance. Accuracy, 
sensitivity, and F1-score are high, indicating that the model correctly identifies this class. The 
performance of the model is very good in the Dried class. Both accuracy and F1 score are high, 
indicating that the model correctly identifies this class. In the Healthy class, the sensitivity of the 
model is very high, which indicates that the model correctly identifies all healthy plants. Accuracy 
and F1-score are also quite high. 

 
Table 3 
Classification Report 

Class Acc Recall F1-score Number of images 

Banded 0.7821 0.8714 0.8243 70 

Brown_R 0.9586 0.9846 0.9714 47 

Brown_S 0.9394 0.6596 0.7750 259 

Grassy_S 0.9811 1.00 0.9905 52 

Pokkah_B 1.00 0.7045 0.8267 44 

Sett_R 1.00 1.00 1.00 98 

Smut 0.7273 1.00 0.8421 48 

Viral 0.9348 0.8600 0.8958 100 

Yellow 0.9716 0.9553 0.9634 179 

Dried 0.9608 0.9423 0.9515 52 

Healthy 0.9286 1.00 0.9630 65 

 
This report reveals that the model generally performs well on most classes, but requires 

improvement on some classes (particularly Pokkah_B and Brown_S). The model performs excellently 
in Sett_R and Grassy_R but has lower accuracy rates in classes such as Smut and Banded. This analysis 
is useful to identify the strengths and weaknesses of the model and make improvements where 
necessary. 

 
5. Discussion  

Among the many studies that have been done, this one stands out as being unique and different 
from all the others by doing a thorough and comprehensive evaluation and comparison of various 
model of the EfficientNet architecture. The research entails conducting a rather exhaustive 
comparison of the performance of the varied EfficientNet architectures, that is, starting from the 
smallest – “b0” through the largest – “b7” families as well as the EfficientNetV2 families which would 
consist of EfficientNetV2-small, EfficientNetV2-medium, and EfficientNetV2-large.In this case, one 
can gain insight into the accuracy of the models under different depths, thereby analyzing their 
structures. Unlike the traditional methods, deeper study of the learning approach reveals that 
incorporating automated deep learning provides more powerful and effective results. This research, 
thus, insinuates that deep learning can achieve both high accuracy and speed in identifying sugarcane 
diseases, hence the advantages offered to disease diagnosis by this approach. Artificial intelligence-
driven applications overcome the obstacles and deliver unfathomable speed and precision in 
diagnosing patients, thus maximizing resource utilization and boosting overall efficiency. In addition 
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to the decrease in the dependence on labor and the cost cutting on large-scale farming that the 
automatic systems lead, there are significant pluses. Thus, the comparison of different achievable 
versions of EfficientNet models definitely becomes a means of finding out what the strengths and 
weaknesses of each model are. As a result, the most suitable model is going to be selected. 

 
6.Conclusion 

Deep learning methods have recently become popular for image processing. In this study, the 
classification of sugarcane leaf images belonging to 11 classes of the Sugarcane Leaf Dataset was 
investigated. For this purpose, EfficientNet models were examined and the basic models ResNetv2-
50 and InceptionV4 models were compared. Highest accuracy rates were found by EfficientNet-b6 
(0.9339) and Inception-v4 (0.9310) models. Models with low accuracy such as EfficientNet-b5 
(0.9053) and EfficientNetv2-Large (0.9014) still achieved high accuracy. However, the fact that 
EfficientNetv2-large (117.25m) has the lowest accuracy, as the model with the highest model 
complexity, shows that when the model complexity and accuracy rate are compared, no significant 
relationship can be found. When making this comment, it is necessary to consider that a small-scale 
data set is used. This may cause different results in real applications. For this reason, renewing the 
study with large data sets in future studies will increase the accuracy and validity compared to real 
data. For this reason, models such as EfficientNet-b6 are preferred where high accuracy and F1-score 
are important, while low complexity models such as EfficientNet-b0 can be preferred in cases of 
limited resources. Since more realistic results can be obtained with larger data sets, the data set can 
be enlarged in future studies. Also in future work, we would like to validate the proposed model in a 
live deployment. 
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