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advances in the process of intelligent manufacturing (IM), there is growing
attention on the integration of manufacturing and the service industry,
which has garnered the interest of numerous experts and scholars in the
field of intelligent manufacturing services (IMS). This article combines
intelligent manufacturing enterprises, intelligent service nodes, and
consumers. Based on the background of intelligent manufacturing services,
it collects risk factors within the smart supply chain (SSC) that connect
different service nodes. These factors were evaluated by experts using a
proposed linguistic q-rung orthopair fuzzy weighted averaging (Lq-
ROFWA) operator in combination with the Decision-Making Trial and
Evaluation Laboratory (DEMATEL) method for aggregation operations.
Finally, we obtain the conclusions that the most influential factor affecting
other risk factors is the inadequate identification of core customer needs,
and the most important risk factor for smart supply chains oriented to
intelligent manufacturing services is the leakage of customer information.
After analyzing the relevant data, we provide some theoretical and
managerial implications for IM enterprises.
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1. Introduction

Driven by big data in social networks, the mobile internet, and other services, market competition
is gradually shifting from being "production-centered" to being "customer demand-centered." The
ability to accurately and efficiently respond to customer needs has become the key factor for
manufacturing companies to win in the market competition [1]. In 2020, the Ministry of Industry and
Information Technology, the National Development and Reform Commission, and 15 other
departments jointly issued the "Guiding Opinions on Further Promoting the Development of Service-
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Oriented Manufacturing." It emphasized the development of nine major models, including industrial
design services, customized services, supply chain management, shared manufacturing, inspection
and testing certification services, full lifecycle management, general integration and general
contracting, energy-saving and environmental protection services, and production-oriented financial
services. This includes the "customer-centric" "customized services." Meanwhile, as global
manufacturing continues to advance in the process of intelligent manufacturing, experts and scholars
are paying increasingly more attention to the integration of manufacturing and services.
Manufacturing services, as a research subject for integrated product services, encompass both
productive services and manufacturing servitization. The former refers to intermediary services
provided by service companies to manufacturing enterprises, while the latter refers to product
service systems provided by manufacturing enterprises to end-users. [2] In the process of deepening
the application of industrial internet and artificial intelligence, manufacturing services are becoming
more intelligent, evolving into intelligent manufacturing services.

The DEMATEL method, through the logical relationships and direct impact matrix among various
elements in a system, can calculate the influence degree of each factor on other factors as well as
their vulnerability to influence. This allows for the calculation of the causality degree and centrality
of each element, serving as the basis for constructing the model and determining the causal
relationships among elements and the status of each element within the system. Shieh [3] and
Kashyap [4] use the classical DEMATEL method to examine the factors influencing hospital service
guality and the impediments to the implementation of cycles in the aluminum industry. Ibrahim
Yilmaz [5] combined the Trapezoidal Fuzzy Set with DEMATEL to analyze the maintenance
performance of a chemical industry company. Sun [6] combined g-ROF with DEMATEL to study the
issue of strategic selection of alternative options in renewable energy systems.

Building upon existing researches, this article wants to solve the following questions: (1) What
are the risk factors of SSC in IMS? (2) How to use scientific methods to evaluate risk factors? This
paper’s objectives are formulated as follows: First, we identify the risk factors of smart supply chains
in IMS through literature research. Secondly, we propose a new risk assessment framework for IMS,
integrating smart supply chains with it. Thirdly, we extend the traditional DEMATEL method and
obtain a new risk assessment model.

The contribution of this article to the existing studies can be summarized as follows. Firstly, based
on the existing research related to IMS, this paper considers each link in the smart supply chain as
intelligent service nodes and proposes a new risk assessment framework. Secondly, we identify risk
factors at different service nodes in the smart supply chain. Thirdly, although the traditional
DEMATEL method can intuitively show the relationship between system elements, the evaluation
process is too simple and subjective. This paper combines linguistic g-ROFS with the traditional
DEMATEL method to solve the uncertainty and ambiguity in the evaluation process and provide a
more flexible evaluation framework.

Section 2 provides a literature review of previous research. The new evaluation model will be
introduced in Section 3. Section 4 presents a case study. Section 5 includes the discussion of the
evaluation results. And some research implications will be given in Section 6. Section 7 is a conclusion
of this article.

2. Literature review
2.1 Intelligent manufacturing service

As global manufacturing advances in the process of smart manufacturing, there is increasing
attention on the integration of manufacturing and the service industry. More and more experts and
scholars are beginning to focus on research in the field of intelligent manufacturing services. Zhang
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[2] believe that intelligent manufacturing services are the result of the increasing intelligence of
manufacturing services in the process of deepening the application of industrial internet and artificial
intelligence. Li [1] believe that intelligent manufacturing services involve harnessing, analyzing,
storing, reasoning, and applying big data resources in manufacturing through the use of next-
generation information technology. This enables the perception of environmental changes both
inside and outside the system, as well as scientific analysis, decision-making, and process
optimization, ultimately leading to reduced manufacturing costs and improved manufacturing
efficiency. In other words, it involves advanced processing and utilization of information. Giret [7]
believes that within an operational system, each participant should be capable of providing
specialized services to others. However, since the system can be overly complex, combining the
architecture of intelligent manufacturing systems with services is essential for developing intelligent
automation control and execution within manufacturing systems. Zhang et al. [8] combines service-
oriented manufacturing, service and manufacturing design, and manufacturing monitoring with
digital twin technology in intelligent manufacturing to establish a collaborative mechanism. Wang et
al. [9] proposed a credit-driven service configuration method to handle the complex collaborative
relationship between intelligent manufacturing and services. Zhang et al. [10] established an
integrated framework for active discovery and optimal allocation of smart manufacturing services to
promote sustainable, flexible, and collaborative production. In this way, we could perceive
manufacturing resources through the application of information and communication technologies.
Fei Tao et al. [11] believes that servitization has become a prominent tendency in the manufacturing
industry, and proposed a framework of New IT driven service-oriented smart manufacturing (SoSM).
Fei Tao et al. hopes to promote smart manufacturing by fully utilizing new IT technologies and
services.

2.2 Smart supply chain

In recent years, modern information technologies such as the Internet, cloud computing, big data
analysis, Internet of Things, artificial intelligence and blockchain have developed rapidly, and more
and more companies have begun to implement smart supply chain changes. Experts and scholars
have also conducted research on smart supply chains and smart supply chain management. Liu et al.
[12] divided the management system of smart supply chain into seven parts, namely smart supply
chain decision-making mechanism, collaborative supply chain operation management, integrated
supply chain organization model, digital supply chain management information platform, and
intelligent supply. chain logistics system, proactive supply chain risk control and scientific supply
chain performance evaluation. Based on the research theory of smart supply chain and SCOR supply
chain model, Liu et al. [13] used methods such as literature research and comparative analysis to
explain the operation process of smart supply chain and the mechanism of smart supply chain quality
formation. And Liu et al. [13] designed a smart supply chain quality standard system under the
guidance of the three-dimensional reference model. Liu et al. [14] selected four cases of Chinese
companies developing smart supply chains, and conducted cross-analysis on these four cases to study
the correlation mechanism between smart technology and smart supply chain innovation
performance. AlMulhim [15] used hypothesis testing method to explore the impact of digital
transformation on enterprise performance in the context of smart supply chain. Viriyasitavat et al.
[16], in the context of smart supply chain, attempts to integrate blockchain technology into a service-
oriented architecture to achieve seamless collaboration, cooperation, and integration of business
processes on multiple platforms. Butner [17] pointed out that supply chains can not only be
connected to other supply chains, but also to transportation systems, financial markets, power grids,
and even natural systems such as rivers and weather. In addition, Butner [17] believes that a smarter
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supply chain should have the characteristics of "Instrumented", "Interconnected"” and "Intelligent".
Tripathi [18] pointed out that supply chain systems are becoming increasingly complex and uncertain,
and many technological innovations are making them smarter. And Tripathi [18] presented a
framework to formulate transformation strategy and discusses implementation strategy in detail.

2.3 A new framework of SSC in IMS

The advantages and disadvantages of supply chain management are also key factors in assessing
a company's competitiveness. Therefore, identifying risks within the supply chain system, conducting
evaluations, and providing corresponding recommendations to prevent operational issues within the
supply chain system are of utmost importance. However, how to reasonably summarize various risk
factors is also a very important issue. Traditional supply chain management includes a series of
complex activities such as planning, procurement, production, delivery and returns management,
involving multiple participants and a series of decision-making processes [12]. With the continuous
development and integration of intelligent technology, every participant in the traditional supply
chain has undergone intelligent and technological upgrades, forming different intelligent service
nodes in SSC.

Before the customer receives the product, the product generally goes through a complete supply
chain system process. During the product design process, companies need to conduct research and
predictions on consumer needs and preferences. Marc et al. [19] believes that accurate demand
forecasting has a significant impact on the operation of the supply chain system, which will affect the
company's performance. And he came up with a mathematical model that linked customer demand
for a product to the risks posed by warehouse inventory levels and the operations of the production
process. Suppliers need to carry out smart procurement and smart warehousing of materials. Chen
et al. [20] assessed the risks of a service procurement company from the perspective of big data. He
divided procurement risks into environmental risks, competition risks, moral hazards, financial risks,
performance risks and internal control risks. With the development of science and technology, more
and more related service companies are using automatic guided vehicles (AGV) and radio frequency
identification technology (RFID) in the warehousing process. For example, Oke et al. [21] conducted
research on how to safely use RFID technology in the construction industry. Bekishev et al. [22] used
the FMEA method to conduct risk assessments on AGVs and other equipment; and proposed a new
risk management algorithm to reduce risks. Intelligent manufacturing has an important impact on
the high-quality development of the manufacturing industry. Li et al. [23] made a detailed review of
the application of artificial intelligence in smart manufacturing, including new science and
technology, new technology systems, etc. In order for sellers to provide services to consumers more
conveniently and effectively, more and more related service companies are beginning to try to use
smart transportation and smart distribution technologies. Through case analysis and literature
analysis, Liu et al. [24] used intelligent models to illustrate the relationship between logistics and
transportation and 5G loT technology.

Therefore, this article will focus on intelligent manufacturing services and, from a perspective of
smartness, take intelligent manufacturing enterprises as an example to identify potential risks in the
operations of each collaborating enterprise and in the process of engaging with consumers. It will
also conduct assessments and analyses to ensure the efficient and smooth operation of every stage
(intelligent service node) within the entire smart supply chain system. As shown in Figure 1, the smart
service nodes will be referenced according to the elements in the Supply-Chain Operations
Reference-model (SCOR), such as planning, procurement, production, distribution, and sales, and will
correspond to intelligent forecasting nodes, smart procurement nodes, smart warehousing nodes,
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intelligent manufacturing nodes, smart transportation nodes, smart distribution nodes, and external
environment.
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Fig. 1. The hierarchical framework of intelligent manufacturing services
2.4 Risk factors of SSC

Based on the different intelligent service nodes in Figure 1, in this section we will collect and
summarize the risk factors that affect the smart supply chain by literature research.

Before the product put into production, the product needs to be designed, and the company
needs to design according to the preferences of consumers. At this stage, there exists a prediction
risk. This includes the miscellaneous data sources of product designing requirements and the short
timeliness of maintenance [1]. Besides, inadequate identification of customer core needs will also
have an impact on the performance and quality of the entire supply chain. Then, the analysis of the
market situation is inaccurate. The competition of enterprises should not only be managed internally,
but also be analyzed externally, including the market and competitors [25].

As one of the important stages in the supply chain system, suppliers are involved in the smart
storage of goods and the smart procurement with other collaborative enterprises. Smart storage is
the product of warehouse automation. It works together through automation and Internet
technologies to improve the productivity and efficiency of the warehouse, minimize the number of
labor and reduce errors at the same time. With the development and progress of information
technology, many enterprises apply radio frequency identification (RFID) and automatic guided
vehicle (AGV) to warehouse management. If these technologies are not mature or have problems in
the application process, they will cause huge losses to the enterprise. For example, the RFID chip may
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be attacked in the process of reading, and the electronic tag is misread. In addition, the AGV path
error may cause car collision and other risks, which increases the losses of enterprises.

The risk of smart procurement refers to the possibility that some technologies of suppliers or
suppliers' networks may be damaged by unexpected conditions in the process of obtaining some
resources to meet the needs of consumers. This possibility is hidden in every stage of procurement.
For example, the procurement information cannot be symmetrical in time [20] and the information
in the purchaser's database is not updated in time [20]. Besides, Weak traceability and supervision
[22] may lead to obvious material loss and poor control of material quality during procurement and
transportation.

Nowadays, more and more manufacturers are integrating intelligent manufacturing technology
into their production processes. Intelligent manufacturing is an advanced production method based
on the deep integration of new generation information technology and advanced manufacturing
technology, running through various manufacturing activities such as design, production,
management, and service. It has characteristics such as self-awareness, decision-making, execution,
adaptation, and self-learning, aiming to improve the quality, efficiency, and core competitiveness of
the manufacturing industry. In various stages of the intelligent manufacturing process, there are also
different risks. For example, the industrial control equipment is difficult to be safely controlled and
data fusion of incorrect information [26]. Besides, the loss of production data [26] will also lead to
abnormal production. Isolated and disconnected systems [27] are also the problems of many
manufacturing enterprises. More and more enterprises invest in ERP, WMS, MES and other systems
for production management, but each system is isolated, resulting in disordered production lines and
low efficiency. A large number of data packets are injected, resulting in network congestion [27].
When a large number of data packets are poured into the manufacturing process, it will cause
network congestion, and even paralysis in serious cases, which will have a huge impact on
production. The system control network is attacked [28]. There are a wide variety of execution
equipment, control equipment and sensor equipment in the intelligent manufacturing system, and
there are widespread security vulnerabilities. The introduction of Internet technology will expose the
equipment to the network and make it easier to be attacked through the Internet.

Smart transportation mainly relies on the rapid development of the Internet of things in recent
computer technology efficiently, and even applies to the entire traffic management system.
However, the real-time performance of traffic information is not up to standard [24], and the lack of
accumulation of smart logistics technologies [29] has become a factor hindering the development of
smart transportation system. At present, the amount of traffic information collection cannot support
smart transportation, active transportation and all-round traffic information services, which will
greatly affect the efficiency of transportation. In addition, the imperfect institutionalization of
transportation management is also a significant risk.

The seller is responsible for direct communication with consumers and delivery. But there are still
some risks affecting the consumer satisfaction. During the delivery of goods, the privacy of customers
is easy to leak [27]. When customers' privacy is leaked, it will endanger customers' safety and affect
customers' satisfaction. Then, the tracking ability of distribution information is poor [30], and the
information of goods cannot be tracked in time, which will lead to low distribution efficiency and
security risks. In addition, the poor or affected GPS signal [30] will also affect the efficiency of goods
distribution. GPS technology can track the driving status, driving path and other information of
transportation vehicles in real time. If GPS is affected, it will not be able to feed back the problems in
the process of order in time.

In addition to the five stages mentioned above, the operation of the whole supply chain system
is also affected by external links. This paper mainly puts forward two external risks: first, the
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adjustment of industrial policies [31] has greatly affected the development of the industry, and
different policies will directly affect the operation level and economic benefits of enterprises.
Secondly, natural disasters or emergencies [31] will also hinder the normal operation of the supply
chain system. Natural disasters mainly include meteorological disasters, geological disasters, marine
disasters, diseases and other irresistible factors. Emergencies include large-scale diseases, epidemic
situations, etc.

In order to better show the risk factors involved in different stages, this section classifies and
summarizes them as shown in Table 1.

Table 1
The risk factors of smart supply chain in intelligent manufacturing services
Risk . Details of risks R.elevant
categories Literatures
FR1: Inaccurate market situation analysis [25]
Product FR2: Inadequate identification of customer core needs [25]
designing FR3: Miscellaneous sources of customer demand data [1]
FR4: Short message maintenance and fast failure [1]
SP1: Purchase information cannot be symmetrical in time [20]
SP2: The purchaser's database information was not updated in
time [20]
Supplier SP3: Weak traceability and supervision of procurement [22]
SS1: Misreading of electronic labels [21]
SS2: RFID chip is attacked [21]
‘é’ SS3: The path route of AGV is error [22]
< IM1: Industrial control equipment is difficult to be safely
9 controlled [26]
ig IM2: Fusion of wrong data [26]
& Manufacture  IM3: Data loss [26]
E IM4: Isolation of the system [27]
l‘; IM5: Net jam because of massive data packets injection [27]
2 IM6: System control network is attacked [28]
ST1: The real-time performance of traffic information is not up to
o standard [24]
I;:g:zgzsr ST2: Low level of intelligent logistics technology [29]
ST3: Imperfect institutionalization of transportation
management [29]
SD1: Poor tracking ability of distribution information [30]
Seller SD2: The privacy is leaked [27]
SD3: Poor GPS signal or affected [30]
. ER1: Adjustment of industrial policies [31]
Environment . .
ER2: Natural disasters or emergencies [31]

2.5 Methods for risk evaluation

Risk management is the process of identifying, assessing and responding to potential risks. It
involves a comprehensive analysis and assessment of risks and taking appropriate measures to
reduce or control the occurrence and impact of risks. Risk management is important for organizations
to make informed decisions in uncertain environments and reduce potential risks and losses.
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Govindan [32] used the traditional DEMATEL method to prioritize the risks faced by third-party
logistics service providers through threshold comparison, and analyzed the impact between different
risk categories. Rajesh [33] studied risk drivers in electronic supply chains. They used the gray-
DEMATEL method to determine and construct a causal relationship graph between risk drivers.
Sreedevi [34] conducted a research on supply chain flexibility using structural equation modeling to
mitigate supply risk, manufacturing process risk, and delivery risk in the supply chain. Rostamzadeh
[35] constructed a new research framework for sustainable supply chain risk management and
combined fuzzy TOPSIS and fuzzy Criteria Importance Through Inter-criteria Correlation (CRITIC)
methods to analyze and study 44 risk factors. Based on the Failure mode and effects analysis (FMEA)
method, Wan [36] combines rough sets with the Technique for Order Preference by Similarity to an
Ideal Solution (TOPSIS) method to deal with fuzzy information and the issue of risks' weights. Hansen
[37] conducts research on climate risks affecting agricultural poverty alleviation through a range of
risk-reducing agricultural production technologies and practices and interventions. Abdel-Basset et
al. [38] proposed a combination of plithogenic multi-criteria decision-making approach based on the
TOPSIS and CRITIC methods and conducted an important ranking of factors in sustainable supply
chain risk management. Munir [39] used a covariance-based structural equation model to test the
proposed hypotheses and explore the connection between supply chain integration and supply chain
risk management to improve the operational performance of enterprises. Liu [40] used hierarchical
cluster analysis method to identify risk factors in smart supply chain and established a risk assessment
index system to reduce potential losses in intelligent manufacturing. Lin [41] conducted detailed
research on risk prediction and assessment using machine learning methods such as Artificial neural
networks (ANNs) Support vector machine (SVM) Random forest (RF) and Bayesian network (BN)
under different fuzzy set theory environments. Based on the current situation of China's intelligent
manufacturing industry, Li [42] constructed an evaluation index system for intelligent manufacturing
system supplier selection, and used the PLS-SEM method to establish an evaluation model for
intelligent manufacturing system supplier selection risk. Seker [43] regarded the spread of the
epidemic as a multi-complex decision-making problem and combined the interval-valued g-rung
orthopair fuzzy set with the COmplex PRoportional Assessment (COPRAS) method. And the risks of
epidemic spread were assessed from social, technical, economic and governmental aspects. Cheng
et al. [44] assessed and identified the risks of factors affecting the historical concentration of
microcystin in Taihu Lake, China, through sampling and chemical element analysis. Reshad [45]
integrates the TOPSIS and VISekriteri-jumska optimizacija i KOmpromisno Resenje (VIKOR) methods
to identify and assess the obstacles to sustainable supply chain risk management, and proposes
strategies to overcome the obstacles. Lima et al. [46] proposed a theoretical framework on risk and
uncertainty management in sustainable supply chains to help scholars and practitioners understand
the challenges of circular economy implementation. Bekishev [22] identifies potential hazards
associated with AGV/AMR robots, and in order to simplify and increase work efficiency, this article
proposes a risk management algorithm suitable for high-tech projects. Minguito et al. [47] used the
Gray Relational Analysis (GRA) method to verify the effectiveness of the FMEA method in identifying
priority issues related to supply chain risks.
This article summarizes the previous literature in Table 2 below:
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Table 2
Summary of previous literatures

No. Authors (Year) Values Research Methods Application
. The interrelationships of third party
1 [C-;oz\;mdan et al. Real value DEMATEL logistics  service providers and
customers
5 Rajesh et al. Grey value Grey-DEMATEL Causality (?f risk drivers in electronic
[33] supply chains
3 Sreedevi et al. Real value Structural equation The moderating role of supply chain
[34] modeling flexibility in risk mitigation
4 Rostamzadeh Triangular  fuzzy Fuzzy TOPSIS- CRITIC Sustainable  supply chain  risk
et al. [35] value management
5 Wan et al. [36] Rough fuzzy vale Rough-TOPSIS FMEA Risk Asse‘ssment in Intelligent
Manufacturing Process
Risk-reducing
Hansen et al. agricultural production Impact of climate risk management on
6 Real value . .
[37] technologies and crop production
practices
Abdel-Basset et Triangular . Plithogenic TOPSIS- Sustainable  supply  chain  risk
7 neutrosophic
al. [38] CRITIC model management
value
Munir et al. Structural equation The operational performance of
8 Real value . .
[39] modeling companies
9 Liu et al. [40] Real value The . hler.archlcal Smarfc Supply Chain RIS‘k Assessment in
clustering analysis Intelligent Manufacturing
The application of machine learning
10 Linetal. [41] Fuzzy values ANNs, SVM, RF, BN methods in risk prediction and
assessment
. PLS-SEM (Least squares Risk Assessment in Supplier Selection
11 Lietal. [42] Real value structural equation ) .
for Intelligent Manufacturing
model)
12 Seker et al. [43] Interval-valued g- COPRAS Risk as§essment to overcome the
ROF pandemic
Sediment sampling, Risk assessment and identification of
Cheng et al. . . . L
13 [44] Real value Geochemical element factors influencing the historical
analysis concentrations of microcystin
Evaluating barriers and strategies to
14 F:;]had et al. Real value TOPSIS, VIKOR sustainable  supply chain  risk
management
15 Limaetal. [46] Realvalue Delphi R.ISk and uncertalr.rcy management in
circular supply chains
Bekishev et al. Risk Analysis for the Implementation
16 [22] Real value FMEA of AGV/AMR Robotic T echnologies
17 Minguito et al. Real value FEMA, GRA Identifying prl'orlt'y issues relating to
[47] the supply chain risks
18 This article Lg-ROF value Lg-ROF-DEMATEL Risk factors assessment of SSC in IMS
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2.6 Research gaps and Research objectives

The research gaps are summarized as follows: (1) In the existing literature, supply chains or smart
supply chains are directly used as the research object to conduct risk factor analysis (e.g., Liu et al.,
2021). Currently, there are no articles that use smart manufacturing services as a background or
research system. (2) Although the classic DEMATEL method is often used in factor analysis research
(e.g., Govindan et al., 2016), it cannot handle the uncertainty of information in the evaluation
process.

Considering the aforementioned research gap, this paper aims to identify the risk factors of SSC
in IMS and adopt a scientific and comprehensive method to conduct risk assessment. Firstly, this
article draws on the SCOR model to propose corresponding intelligent service nodes and a framework
for identifying risk factors. Secondly, we combine linguistic q-ROFS with the classic DEMATEL method
to analyze the risk factors of each smart service node. In order to solve the uncertainty and ambiguity
in the evaluation process, this article introduces g-ROFS; in addition, combining linguistic set with g-
ROFS can make the evaluation process more flexible.

3. Methodology
3.1 Linguistic g-rung orthopair fuzzy sets
In order to deal with the linguistic fuzzy decision-making problem efficiently, Liu and Liu [49]
combined linguistic term sets with g-rung orthopair fuzzy sets to obtain a new hybrid evaluation set,
which is the Linguistic g-rung orthopair fuzzy sets (Lg-ROFS).
Definition 1 [48]. Suppose X ={x,x,,...,x,} isafiniteset,and S={s,s,,....s,} isalinguistic term set.
Then the linguistic g-rung orthopair fuzzy set 4 defined on X can be expressed as:
A= {<x,su (x),s, (x)>|x e X} (2)
where s (x),s, (x) ES[O,,]' s,(x) and s,(x) represent the degree of linguistic membership and
the degree of linguistic non-membership, respectively. For any x e X, the condition u? +v <t (g >1)
is always established, then, a=(s,,s,) can be called as the linguistic g-rung orthopair fuzzy number

(Lg-ROFN), and we can regard X, as the set of all Lg-ROFNs on the basis of 5, ;. Besides, the degree

[0, [0.] *

of linguistic indeterminacy for A can be defined as =, (x) =Sy

@ —ut =)

With the change of the value of the parameter q, the Lg-ROFS will also degenerate into other
forms. When q = 1, the Lg-ROFS will degenerate into the linguistic intuitionistic fuzzy set (LIFS), and
when q = 2, the Lg-ROFS will degenerate into the linguistic Pythagorean fuzzy set (LPyFS).

Definition 2 [49]. Let 4, =(s,;.s,), @, =(s,2.5,,) € X, ; be any two Lg-ROFNs, where >0, then the

foundational operational rules of Lg-ROFNs are as follows:

a,®a, =|s oS, (2)
[Lz"+u q _Lquzq ]q T
1 2 )‘q
a,®a, = Sy >S 1 (3)
t {V]lf 0 ::’zq }"
Aa, =|s S (4)
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a’=\|s oS N (5)
t[T] [z" —t"[l—:‘Tq] ]q
Definition 3 [49]. Let 4, =(s,,.5,), a, =(5,2:5,2) € X}, be any two Lg-ROFNs, then the standardized

Hamming distance for a, and a, is shown below:

+

+

9 _.q g _ 4
U —up |+ vy ="

6
o (6)
Definition 4 [49]. Let a =(s,,s,) € X0 be a Lg-ROFN, then the score function S(a) and accurate function

q q
a _”2|

d(al,az)z

H(a) are defined as follows:

q q _ 9

S(a):‘f’t +u2 v (7)
H(a)=u’ +v* (8)

Definition 5 [49].Let a, =(s,,.s,,), a, =(5,2.5,,) € X[, ; be any two Lq-ROFNs,

(1) if S(a1) >S(a,), then a1 >a,, which means a; is better than a.

(2) if S(a1) =S(a.), then

if H(a1) >H(a.), then a1 >a,, which means a; is better than a..

if H(a1) =H(a.), then a1 = a2, which means a; is equal to a..

Definition 6. Leta, =(s,,.s, ) € X, (i=1.2.....n) be a Lq-ROFNs set, taking any g > 0, the value of the

aggregation after applying the weighted linguistic g-rung orthopair fuzzy averaging operator (WLg-ROFA) is
still Lg-ROFN, and the aggregation value is as follows:

WLq - ROFA(a,,a,,...,a,)=

(9)

3.2 Lq-ROF-DEMATEL

In this section, we will fuse the Lg-ROFS with the Decision-making Trial and Evaluation Laboratory
(DEMATEL) method to analyze the risk factors of the smart supply chain for intelligent manufacturing services.

Step 1. Constructing the initial direct influence matrix

Each expert will compare the interactions of each of the two risk factors based on the linguistic term set S
= {sp = super low, s; = very low, s, = low, s3 = medium, s4 = high, ss = very high, ss= super high}. The eth expert's
evaluation for the degree to which risk factor i affects risk factor j is represented as a; = (s" sj) , Where, i, j =

uij >

1,2,.., ne=1,2, .. k Then, the initial direct influence matrix can be expressed as 4° = <a."> - <se s > .

ij uij > = vij
Step 2. Calculation of expert weights
In the process of risk assessment, the evaluations of experts are very important. In this step, we will apply
the similarity measure between linguistic fuzzy matrices to calculate the weights of each expert.
Based on the initial direct influence matrix of k experts, the total average initial influence matrix A* is
obtained by combining Eq. (2) and Eq. (4) as follow:
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* 1 k e
where, a; =;Zezl% .

Then, the standardized Hamming distance for each expert's initial direct influence matrix and the total
average initial influence matrix can be calculated by using Eq. (6). The similarity measure will be obtained as
follow:

SM(Ae A*)z 27212j=1d(a§»(a;)c)
C O EnE(e(ea) (e @))

),and0<SM(4°,4")<1.

(10)

* c * *
where, (al.j) = (s‘,[j,s

uij
Finally, we can use the obtained similarity measure to calculate the weight of each expert, as shown below
w, =M,e:1,2,...,k. (112)
2o SM(A°,4)
Step 3. Calculation of aggregated direct influence matrix
This paper will use Eq. (9) to aggregate the initial direct influence matrix of each expert, and the aggregated
direct influence matrix 4 will be calculated as follow:

0 <S”|zugg ,S"wzaxg > <S’41uagg ,S"'mﬂgg >

K s s K 0
agg agg agg 9 agg ..
_< U Vil Uy V2

Step 4. Standardization of the aggregated direct influence matrix

k)
Il

In this step, we will divide the aggregated direct influence matrix 4 into two submatrix, linguistic
membership direct influence matrix X* and linguistic non-membership direct influence matrix X* . The

T 1 .
formula of standardization is X=AxS, where § = ————— . And the submatrix can be represented as follows:
max 3 ’_a;
0 s, - s, 0 s, .. s,
Xu S”m 0 S”z Xv Vay O S‘
K K 0 K K 0

Step 5. Identification of the total relationship matrix

The standardized linguistic membership and non-membership direct influence matrix are obtained in
step4. And in this step, we will use T=X (/ - X)* to calculate the total relationship matrix of the standardized
submatrix, where [ is the identity matrix. Then, we will aggregate the two sub-matrices, and the final total
relationship matrix can be shown as follow:

T T T T T T
S“H ’ S"H S“IE ’ sVlz S“ln ’S"ln
T T T T T T
T = S"zl ’ SVu S“:z ’ SV:z o S“z/y ’ S"zu

N r N r N r S r N r N r
Uy 2"V Uny 7" Via Uy > Vin
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After the total relationship matrix T is obtained, the score function of each group of linguistic fuzzy sets in
the matrix can be calculated by Eq. (7), and the score function matrix of the total relation matrix is obtained
as follow:

S(a“) S(alz) S(aln)
- S(ay) S(ay) .. S(a,,)
S(am ) S(anz) S(a,m)
Step 6. Calculation of the importance and contribution
According to the score function matrix T, we can obtain the impact degree r; and the affected degree ¢;
of each risk factor. r; represents the sum of the i-th row in the matrix T*, then r; summarizes the direct and
indirect impact of risk factor i on other risks (i.e. the impact degree of risk factor i). ¢; represents the sum of
the j-th column in matrix T*, then ¢; summarizes the direct and indirect impact of other risk factors on risk
factorj (i.e. the affected degree of risk factor j). And when i=j, (ri+ ¢;) quantifies the importance of the influence
that risk factor i has in the system, and (r; - ¢;) quantifies the contribution of criterion i as a cause or effect
criterion in the system.

= {iS(a[/)}

Step 7. Determination of the threshold value and drawing network directed graph

Since the matrix T* represents the interaction between any two risk factors, it is necessary to set a
threshold to filter some negligible effects. In this way, the threshold value is compared with the values of
different elements in matrix 7. And only when it is greater than the threshold value, can the arrow be used
in the directed graph to indicate that the risk factor i has an impact on the risk factor j. In this study, the
threshold value is set as the average value of the elements in the matrix T*, and the value of (r + ¢, r - ¢) will
be put into the coordinate system.

4. Application

At present, there are few articles that combine "service + manufacturing" and "intelligent +
manufacturing" to do some researches. Due to the intelligent, technical and directional characteristics of
intelligent manufacturing services, the stable operation of smart supply chain system is one of the key
elements of intelligent manufacturing services. In other words, intelligent manufacturing services need the
support of smart supply chain system. Therefore, for intelligent manufacturing services, this study takes
intelligent manufacturing enterprises as an example to collect and analyze the risk factors in the whole smart
supply chain system. In this paper, the risk factors are analyzed mainly through the scoring of evaluators. The
evaluators are mainly experts and scholars in the fields of intelligent manufacturing services, smart supply
chain and risk management. In addition, there are also experienced employees in relevant departments of the
enterprise.

In this section, we invite five experts to evaluate the collected risk factors, and use the Lg-ROF-DEMATEL
model in Section 3 to calculate and analyze the evaluation results of the experts, and finally give the
corresponding theoretical and practical suggestions. The details of the five experts are shown in Table 3.
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Table 3
The details of the invited experts.
Number . Professional .
Profile . Years of experience
of experts expertise
ly chai ly chai
1 Supply chain Supply chain Ten years
manager management
1 IM manager M develppment Ten years
experience
One professor with ten years of
3 Three experts IMS technology experience; two associate
from academia  and the SSC field professors with six years of

experience

Step 1. Firstly, the five experts will compare the degree of influence of 24 risk factors using Lq-ROFS to get
the initial direct influence matrix. Each expert will evaluate each of the two risk factors based on their own
experience and in accordance with the linguistic term in Section 3.2. The initial direct influence matrix of the
first expert is shown below as an example.

Matrix 1. The initial direct influence matrix
(Detailed matrix information will be shown in the Appendix)

[(54550)  (54585) oo oo (8558)  (85,8,) ]
(s5,5,) (55,5,
A= <a’flf >24><24 =
(s,,8,) (5,,5))
| (5358)  (5,8) oo oo (55,85)  (Sg550) |

Step 2. After obtaining the initial influence matrices of the five experts, the total averaging initial influence
matrix A* is calculated and show in Matrix 2. Then, Eq. (10) and (11) are used to obtain the similarity measure
(SM) between each expert's evaluation matrix and the total averaging matrix, as well as the weights (w®) of
the five experts, as shown in Table 4 below:

Matrix 2. the total averaging initial influence matrix A*

_(S(),(]()() > SO.()()U ) (SlXZS > s4,282 ) A A (sl.979 > Sl.32() ) (S] 341 Sl.]49 ) i
(S55863>S4573) (8} 3415 S1.140)
A =
(85,0915 S1.741) (8173452, 0a)
_(S1.979531.321) (81970551 888) =+ - (S1.979552903) (So.oowso.ooo)_
Table 4
The weights (we) of five experts
1 2 3 4 5
Expert
SM (A, A*)  0.5089 0.5305 0.5331 0.5223 0.5224
we 0.1944 0.2027 0.2037 0.1996 0.1996

Step 3. - Step 4. After obtaining the evaluation weights of the five experts, we aggregate the evaluation
matrices of the five experts using the WLg-ROFA operator. The aggregated direct influence matrix A% is
obtained, and then the elements in the matrix A?% are divided into two, forming a membership sub-matrix as
well as a non-membership sub-matrix, respectively. Finally, the normalized matrices are obtained as Matrix 3
-4,

Matrix 3-4. The normalized matrices
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[0.0000 0.0636 0.0328 0.0222]

0.0975 0.0222
XN:

0.0348 0.0288

10.0329 0.0328 0.0327  0.0000 |

0.0000 0.0592 0.0182 0.0158]

0.0631 0.0158
X' =

0.0240 0.0284

10.0251 0.0261 0.0410 0.0000 |

Step 5. We compute the total relationship matrix of the two sub-matrices separately and combine them
to obtain the total relation matrix T as shown in Matrix 5. After obtaining the total relationship matrix, the
effects between the risk elements are equally enlarged, and finally the score function matrix T* of the total
relationship matrix is calculated using Eq. (7) as shown in Matrix 6:

Matrix 5. The total relation matrix T

(30.284 2 S0.134 ) (SO.SOO s S0.197 )

(S().384 ’ S(],l‘)() )

(802925 0.164)

(S0.284 2 S0.165 ) (S0.245 s SO. 174 )

(S0.224 2 S0.128 ) (SO.225 s S0.126 )

(S[).232 ’ s(],124 )

(SO.217 ’S0.149)

(SO.ZOS’SO.ISQ) (S0.184’S0.121)_

Matrix 6. The score function matrix T*

[4.9208 4.8305
4.8400

4.8752

49310 4.9334]
4.9380

4.8980

| 4.8739 4.8615

4.8831

4.9424 |

Step 6. After obtaining the score function matrix T*, we will calculate the impact degree (r;), the affected
degree (c)), the degree of center (r; + ¢j) and the degree of cause (r; - ¢j), as shown in Table 5 below:
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Table 5
The center and cause degree of risk factors
Risk

Risk Cj ri+ ¢ ri-¢j I (o] ri+¢cj ri-GCj
factors factors
FR1 117.49 115.75 233.25 1.74 IM3 115,58 115.28 230.86 0.30
FR2 117.62 115.43 233.05 2.20 IM4 115.12 116.28 231.40 -1.16
FR3 115,59 115.02 230.61 0.57 IM5 11496 116.01 230.97 -1.04
FR4 116.00 114.41 230.41 1.59 IM6 114.72 116.46 231.17 -1.74
SP1 115.67 114.50 230.18 1.17 ST1 116.03 115.86 231.88 0.17
SP2 115.60 114.86 230.46 0.74 ST2 116.38 117.26 233.64 -0.88
SP3 115.09 115.56 230.65 -0.48 ST3 116.34 116.66 233.00 -0.32
SS1 116.08 116.86 232.94 -0.78 SD1 116.00 115.93 231.94 0.07
SS2 115.69 116.76 232.44 -1.07 SD2 117.31 117.07 234.38 0.24
SS3 116.08 116.36 232.44 -0.27 SD3 116.06 116.82 232.88 -0.76
M1 115.07 115.92 230.99 -0.84 ER1 117.06 116.74 233.81 0.32
IM2 115.42 115.59 231.01 -0.16 ER2 117.07 116.67 233.73 0.40

Step 7. When the degree of center (r; + ¢;) and the degree of cause (r; - ¢;) are used as horizontal and vertical
coordinates respectively, we can correspond each of the 24 risk factors to the axes, as shown in Figure 2:

2.50 FR2
L ]
2.00 FR4 FR1
o
1.50 SP1 e
1.00 SP2
o R3
® IM3 ER2
0.50 SD2
o ST1 %
M2 o ER1 *
0.00 ep1  SS3 ST3
Sp3 ® ° .
-0.50 * 1 SD..3 ST2
@
-1.00 ® IM4 ° SS1 ®
IM5 @ SS2
-1.50 IM6
@
-2.00

229.50 230.00 230.50 231.00 231.50

232.00 232.50 233.00 233.50 234.00 234.50 235.00

Fig. 2. Distribution of risk factors

We will use the average (4.8334) of the values in the score function matrix T* as a threshold to determine
the direction of the arrows in the directed graph by comparing these values of risk factors. And the network
directed graph will be drawn for each stage (as shown in Figures 3 to 8). Besides, we can find, based on the
network directed graph, that there are unidirectional and bidirectional arrows for the influence between risk
factors. The unidirectional arrow indicates a single effect between two factors, while the bidirectional arrow
indicates that two risk factors have a reciprocal effect.
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5. Discussion
In this section, we will analyze the risk factors in the conjunction with the risk network directed graphs at
different stages and the relevant data obtained.

250 /
/ FR2 T

spP1

5é3
050
. 351
T2
1.00 , ss.

i A I

e |

-2.00
229.50 230.00 230.50 231.00 231.50 23200 232.50 233.00 233.50 234.00 234.50 235.00

Fig. 3. The network directed graph of forecasting risk

First, we will analyze the risk factors among different service nodes according to Figures 3 to 8. Based on
the forecasting risk directed graph of the product design process, we can find that FR1 and FR2 as risks related
to the market and consumer demand affect each stage of the supply chain system. And as the smart supply
chain is an important system to break down the barriers between smart manufacturing service nodes, we
need to analyze the risk factors affecting its operation. Inaccurate analysis of the market situation means that
the supply chain system is unable to accurately predict changes and trends in market demand, leading to
possible deviations in production planning, inventory management and logistics arrangements, increasing the
risk of supply chain operations. Beside inadequate identification of customers' core requirements may result
in the supply chain system failing to meet customer expectations, and product quality and delivery time may
not be in line with market demand, thus reducing customer satisfaction.

FR2

1.00

-2.00

22950 230.00 230.50 231.00 231.50 232.00 23250 233.00 233.50 234.00 234.50 235.00

Fig. 4. The network directed graph of SP and SS

SP1 and SP2 mainly unilaterally affect the warehousing service nodes and transportation service nodes. If
the procurement information is not symmetrical in time, the providers of warehousing services and
transportation services will not be able to accurately know the quantity, specification, delivery time and other
key information of the goods. This may lead to forecasting and planning errors, and the inability to make
reasonable warehousing and transportation arrangements, affecting the timeliness and efficiency of services.

145



Journal of Operations Intelligence
Volume 2, Issue 1 (2024) 129-152

Besides, if the database information is not updated in time, there may be a backlog or shortage of goods,
affecting the normal operation of the supply chain.

SS1 and SS3 affect the manufacturing service nodes and the transportation service nodes. Electronic label
misreading may lead to wrong production process and operation. If the information on the electronic label is
incorrectly read or cannot be read, it may lead to errors in the process on the production line, thus delaying
the production schedule and delivery time. Misreading of critical information (e.g., specifications, part
numbers, etc.) on electronic labels may lead to non-compliance with product specifications and quality
problems. AGV path errors will result in abnormal action or downtime of automated equipment. If an AGV
encounters a path error while performing a task, there may be interruptions in equipment operation,
production line downtime, etc., which in turn affects the operational efficiency and capacity of the entire
intelligent manufacturing system.
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. \\ ] /
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513
sP3
0.50
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M5 52
100 M4
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Fig. 5. The network directed graph of IM

As shown in Figure 5, IM1-IM6 have less impact on other service nodes. However, if there is a problem in
the manufacturing process, it will lead to a decrease in the efficiency of the subsequent transportation and
distribution service nodes.
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Fig. 6. The network directed graph of ST

For the risk that exists in the logistics intelligent service node, it is mainly reflected in the lack of
information technology and intelligent equipment. This type of risk mainly affects the warehouse service
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nodes and the manufacturing service nodes, and is mainly reflected in situations such as cargo crushing or out-
of-stocks.

1.00

2.00
22950 23000 23050 231.00 23150 232.00 23250 233.00 23350 234.00 23450 235.00

Fig. 7. The network directed graph of SD

Regarding the sales service node, the main issue lies in the problem of privacy leakage. Privacy leakage
problems can lead to a crisis of trust between intelligent manufacturing service companies, and at the same
time, customers may also experience reduced satisfaction due to information leakage.

The external environment and other service nodes mutually influence each other, in other words, they
have a complementary relationship. Some business phenomena can lead to the establishment of new policies,
and policies can also impact the development of businesses.

2.00
229.50 230.00 230.50 231.00 231.50 232.00 232.50 233.00 233.50 234.00 234.50 235.00

Fig. 8. The network directed graph of ER

Then, according to the values of the impact degree (r;) shown in Table 3, we will find that FR2 (insufficient
identification of core customer needs) is the factor with the highest impact on other risk factors. For customer-
centric intelligent manufacturing service enterprises, customer demands are the prerequisite for all operations.
Failing to accurately comprehend customer requirements and preferences makes it challenging for a business
to establish appropriate product positioning. This can potentially result in unreasonable product designs,
redundant or missing functionalities, thus affecting the market competitiveness of the product. Furthermore,
failing to fully understand the core needs of customers, a business may be unable to grasp market changes
and potential opportunities, impacting the company's innovation capability and product development
direction. This could potentially result in the company lagging behind its competitors in technology and missing
out on market opportunities. Therefore, this article proposes to integrate customer opinions and ideas into

147



Journal of Operations Intelligence
Volume 2, Issue 1 (2024) 129-152

every service node of the smart supply chain system, enhancing customer satisfaction and overall production
efficiency in all aspects.

According to the degree of center (r; + ¢;) shown, the factor with the highest level of importance is SD2
(The privacy is leaked). As the level of intelligence in the supply chain system gradually increases, enterprises
inevitably need to assess and control such network information data. Improper handling may potentially lead
to the leakage of a significant amount of sensitive information, such as supplier information, customer data,
transaction records, and more. If the system is subjected to an attack, hackers may steal this data for illegal
purposes, leading to issues such as the leakage of company and personal privacy, as well as trade secrets.
Furthermore, the source and continuity of information data are also essential factors that deserve attention.
To address such issues, it is necessary to conduct research on the quality of information, which is one of the
challenges that needs to be resolved after the intelligence of the supply chain system is enhanced.

6. Research implications
6.1 Theoretical implications

This article has the following theoretical significance for the research field of risk assessment of IMS. First,
this paper identifies the risk factors in smart supply chain in IMS that will affect the operation of the system.
Risk factors include intelligent forecasting nodes, smart procurement nodes, smart warehousing nodes,
intelligent manufacturing nodes, smart transportation nodes, smart distribution nodes, and external
environment. Comprehensive factor analysis provides relevant insights for both smart manufacturing services
and smart supply chains. Secondly, this paper combines linguistic g-ROFS with the classic DEMATEL method
to solve the problems of uncertainty and ambiguity in the field of evaluation research.

6.2 Managerial implications

In Section 5, we analyzed the assessment results of risk factors. Based on the series of results obtained,
we will provide some managerial implications from both the internal and external perspectives of the
intelligent manufacturing service system.

(1) When a business is unable to efficiently and accurately gather sufficient customer information, there
are several ways to improve data collection. This can be done through enhancing the website, survey
methods, and customer feedback channels to increase the sources of data. In this way, we could
ensure a more comprehensive acquisition of customer information. Additionally, existing data can be
synthesized, and data mining and analysis techniques can be employed to infer potential missing
information, allowing for a better understanding of customer needs and behavior. Furthermore,
businesses can offer value-added services. This means that companies can provide personalized
recommendations, professional advice, discounts, or reward programs to encourage customers to
voluntarily share information.

(2) When customer information is leaked, we should quickly find the source of the information leak, shut
down the affected system, repair the vulnerability, suspend related services and take emergency
measures quickly. Second, we should investigate and identify vulnerabilities: Look inside the system
to identify vulnerabilities and security issues that lead to data breaches. Subsequently, steps are taken
to fix these vulnerabilities to prevent future information leaks. In addition, companies should provide
compensation and additional security measures to customers to restore their trust.

(3) Regarding risks encountered in the intelligent manufacturing process, companies should ensure the
security of industrial control equipment, including regularly updating the software and firmware of
the equipment, configuring strong passwords and access control policies, and using anti-virus software
and other protective measures. In addition, intelligent manufacturing companies must ensure good
connectivity with other service nodes. We can establish a unified information platform to integrate
information from various nodes to achieve data sharing and business process collaboration.

(4) In addition to internal management of the system, enterprises should also strengthen their ability to
adapt to the external environment. We can establish a dedicated team responsible for monitoring
policy changes related to intelligent manufacturing and intelligent manufacturing services. Corporate
executives should identify opportunities arising from policy changes and actively exploit these
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opportunities to promote corporate development. For example, the government may provide funding,
subsidies, or R&D support to promote innovation in intelligent manufacturing. In addition, companies
should maintain sufficient flexibility and be able to quickly adjust their business models and strategies
to adapt to policy changes.

7. Conclusion

This paper takes the integration of "intelligent manufacturing” and "service-oriented manufacturing" as
the research object, starting from the smart supply chain system, and studies the risk issues of smart service
nodes in the smart supply chain oriented to smart manufacturing services. By combining the Lg-ROFS and the
traditional DEMATEL method, a new Lg-ROF-DEMATEL analysis system was constructed to conduct a
comparative analysis of 24 risk factors. Finally, it was concluded that the risk factors that affect the smart
supply chain to a high degree include insufficient identification of customers' core needs, improper processing
of network information data, leakage of customer privacy, and the impact of the policy environment. There
are two shortcomings of this article: first, the identification of risk factors mainly comes from literature search,
without objective screening and analysis; second, the q-ROFS is two dimensions, and there is still room for
expansion. Therefore, future work is mainly to use models to screen risk factors, and secondly, to combine the
larger-dimensional fuzzy environment with the DEMATEL method to study the influence between factors.
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