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With the rapid development of technological informatization, competition 
among enterprises is gradually transitioning from being "production-
centered" to being "customer-centric," making service-oriented enterprises 
increasingly important. In addition to this, as global manufacturing 
advances in the process of intelligent manufacturing (IM), there is growing 
attention on the integration of manufacturing and the service industry, 
which has garnered the interest of numerous experts and scholars in the 
field of intelligent manufacturing services (IMS). This article combines 
intelligent manufacturing enterprises, intelligent service nodes, and 
consumers. Based on the background of intelligent manufacturing services, 
it collects risk factors within the smart supply chain (SSC) that connect 
different service nodes. These factors were evaluated by experts using a 
proposed linguistic q-rung orthopair fuzzy weighted averaging (Lq-
ROFWA) operator in combination with the Decision-Making Trial and 
Evaluation Laboratory (DEMATEL) method for aggregation operations. 
Finally, we obtain the conclusions that the most influential factor affecting 
other risk factors is the inadequate identification of core customer needs, 
and the most important risk factor for smart supply chains oriented to 
intelligent manufacturing services is the leakage of customer information. 
After analyzing the relevant data, we provide some theoretical and 
managerial implications for IM enterprises. 
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1. Introduction 

Driven by big data in social networks, the mobile internet, and other services, market competition 
is gradually shifting from being "production-centered" to being "customer demand-centered." The 
ability to accurately and efficiently respond to customer needs has become the key factor for 
manufacturing companies to win in the market competition [1]. In 2020, the Ministry of Industry and 
Information Technology, the National Development and Reform Commission, and 15 other 
departments jointly issued the "Guiding Opinions on Further Promoting the Development of Service-
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Oriented Manufacturing." It emphasized the development of nine major models, including industrial 
design services, customized services, supply chain management, shared manufacturing, inspection 
and testing certification services, full lifecycle management, general integration and general 
contracting, energy-saving and environmental protection services, and production-oriented financial 
services. This includes the "customer-centric" "customized services." Meanwhile, as global 
manufacturing continues to advance in the process of intelligent manufacturing, experts and scholars 
are paying increasingly more attention to the integration of manufacturing and services. 
Manufacturing services, as a research subject for integrated product services, encompass both 
productive services and manufacturing servitization. The former refers to intermediary services 
provided by service companies to manufacturing enterprises, while the latter refers to product 
service systems provided by manufacturing enterprises to end-users. [2] In the process of deepening 
the application of industrial internet and artificial intelligence, manufacturing services are becoming 
more intelligent, evolving into intelligent manufacturing services. 

The DEMATEL method, through the logical relationships and direct impact matrix among various 
elements in a system, can calculate the influence degree of each factor on other factors as well as 
their vulnerability to influence. This allows for the calculation of the causality degree and centrality 
of each element, serving as the basis for constructing the model and determining the causal 
relationships among elements and the status of each element within the system. Shieh [3] and 
Kashyap [4] use the classical DEMATEL method to examine the factors influencing hospital service 
quality and the impediments to the implementation of cycles in the aluminum industry. Ibrahim 
Yilmaz [5] combined the Trapezoidal Fuzzy Set with DEMATEL to analyze the maintenance 
performance of a chemical industry company. Sun [6] combined q-ROF with DEMATEL to study the 
issue of strategic selection of alternative options in renewable energy systems.  

Building upon existing researches, this article wants to solve the following questions: (1) What 
are the risk factors of SSC in IMS? (2) How to use scientific methods to evaluate risk factors? This 
paper’s objectives are formulated as follows: First, we identify the risk factors of smart supply chains 
in IMS through literature research. Secondly, we propose a new risk assessment framework for IMS, 
integrating smart supply chains with it. Thirdly, we extend the traditional DEMATEL method and 
obtain a new risk assessment model. 

The contribution of this article to the existing studies can be summarized as follows. Firstly, based 
on the existing research related to IMS, this paper considers each link in the smart supply chain as 
intelligent service nodes and proposes a new risk assessment framework. Secondly, we identify risk 
factors at different service nodes in the smart supply chain. Thirdly, although the traditional 
DEMATEL method can intuitively show the relationship between system elements, the evaluation 
process is too simple and subjective. This paper combines linguistic q-ROFS with the traditional 
DEMATEL method to solve the uncertainty and ambiguity in the evaluation process and provide a 
more flexible evaluation framework. 

Section 2 provides a literature review of previous research. The new evaluation model will be 
introduced in Section 3. Section 4 presents a case study. Section 5 includes the discussion of the 
evaluation results. And some research implications will be given in Section 6. Section 7 is a conclusion 
of this article. 
 
2. Literature review 
2.1 Intelligent manufacturing service 

As global manufacturing advances in the process of smart manufacturing, there is increasing 
attention on the integration of manufacturing and the service industry. More and more experts and 
scholars are beginning to focus on research in the field of intelligent manufacturing services. Zhang 
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[2] believe that intelligent manufacturing services are the result of the increasing intelligence of 
manufacturing services in the process of deepening the application of industrial internet and artificial 
intelligence. Li [1] believe that intelligent manufacturing services involve harnessing, analyzing, 
storing, reasoning, and applying big data resources in manufacturing through the use of next-
generation information technology. This enables the perception of environmental changes both 
inside and outside the system, as well as scientific analysis, decision-making, and process 
optimization, ultimately leading to reduced manufacturing costs and improved manufacturing 
efficiency. In other words, it involves advanced processing and utilization of information. Giret [7] 
believes that within an operational system, each participant should be capable of providing 
specialized services to others. However, since the system can be overly complex, combining the 
architecture of intelligent manufacturing systems with services is essential for developing intelligent 
automation control and execution within manufacturing systems. Zhang et al. [8] combines service-
oriented manufacturing, service and manufacturing design, and manufacturing monitoring with 
digital twin technology in intelligent manufacturing to establish a collaborative mechanism. Wang et 
al. [9] proposed a credit-driven service configuration method to handle the complex collaborative 
relationship between intelligent manufacturing and services. Zhang et al. [10] established an 
integrated framework for active discovery and optimal allocation of smart manufacturing services to 
promote sustainable, flexible, and collaborative production. In this way, we could perceive 
manufacturing resources through the application of information and communication technologies. 
Fei Tao et al. [11] believes that servitization has become a prominent tendency in the manufacturing 
industry, and proposed a framework of New IT driven service-oriented smart manufacturing (SoSM). 
Fei Tao et al. hopes to promote smart manufacturing by fully utilizing new IT technologies and 
services. 

 
2.2 Smart supply chain 

In recent years, modern information technologies such as the Internet, cloud computing, big data 
analysis, Internet of Things, artificial intelligence and blockchain have developed rapidly, and more 
and more companies have begun to implement smart supply chain changes. Experts and scholars 
have also conducted research on smart supply chains and smart supply chain management. Liu et al. 
[12] divided the management system of smart supply chain into seven parts, namely smart supply 
chain decision-making mechanism, collaborative supply chain operation management, integrated 
supply chain organization model, digital supply chain management information platform, and 
intelligent supply. chain logistics system, proactive supply chain risk control and scientific supply 
chain performance evaluation. Based on the research theory of smart supply chain and SCOR supply 
chain model, Liu et al. [13] used methods such as literature research and comparative analysis to 
explain the operation process of smart supply chain and the mechanism of smart supply chain quality 
formation. And Liu et al. [13] designed a smart supply chain quality standard system under the 
guidance of the three-dimensional reference model. Liu et al. [14] selected four cases of Chinese 
companies developing smart supply chains, and conducted cross-analysis on these four cases to study 
the correlation mechanism between smart technology and smart supply chain innovation 
performance. AlMulhim [15] used hypothesis testing method to explore the impact of digital 
transformation on enterprise performance in the context of smart supply chain. Viriyasitavat et al. 
[16], in the context of smart supply chain, attempts to integrate blockchain technology into a service-
oriented architecture to achieve seamless collaboration, cooperation, and integration of business 
processes on multiple platforms. Butner [17] pointed out that supply chains can not only be 
connected to other supply chains, but also to transportation systems, financial markets, power grids, 
and even natural systems such as rivers and weather. In addition, Butner [17] believes that a smarter 
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supply chain should have the characteristics of "Instrumented", "Interconnected" and "Intelligent".  
Tripathi [18] pointed out that supply chain systems are becoming increasingly complex and uncertain, 
and many technological innovations are making them smarter. And Tripathi [18] presented a 
framework to formulate transformation strategy and discusses implementation strategy in detail.  

 
2.3 A new framework of SSC in IMS 

The advantages and disadvantages of supply chain management are also key factors in assessing 
a company's competitiveness. Therefore, identifying risks within the supply chain system, conducting 
evaluations, and providing corresponding recommendations to prevent operational issues within the 
supply chain system are of utmost importance. However, how to reasonably summarize various risk 
factors is also a very important issue. Traditional supply chain management includes a series of 
complex activities such as planning, procurement, production, delivery and returns management, 
involving multiple participants and a series of decision-making processes [12]. With the continuous 
development and integration of intelligent technology, every participant in the traditional supply 
chain has undergone intelligent and technological upgrades, forming different intelligent service 
nodes in SSC. 

Before the customer receives the product, the product generally goes through a complete supply 
chain system process. During the product design process, companies need to conduct research and 
predictions on consumer needs and preferences. Marc et al. [19] believes that accurate demand 
forecasting has a significant impact on the operation of the supply chain system, which will affect the 
company's performance. And he came up with a mathematical model that linked customer demand 
for a product to the risks posed by warehouse inventory levels and the operations of the production 
process. Suppliers need to carry out smart procurement and smart warehousing of materials. Chen 
et al. [20] assessed the risks of a service procurement company from the perspective of big data. He 
divided procurement risks into environmental risks, competition risks, moral hazards, financial risks, 
performance risks and internal control risks. With the development of science and technology, more 
and more related service companies are using automatic guided vehicles (AGV) and radio frequency 
identification technology (RFID) in the warehousing process. For example, Oke et al. [21] conducted 
research on how to safely use RFID technology in the construction industry. Bekishev et al. [22] used 
the FMEA method to conduct risk assessments on AGVs and other equipment; and proposed a new 
risk management algorithm to reduce risks. Intelligent manufacturing has an important impact on 
the high-quality development of the manufacturing industry. Li et al. [23] made a detailed review of 
the application of artificial intelligence in smart manufacturing, including new science and 
technology, new technology systems, etc. In order for sellers to provide services to consumers more 
conveniently and effectively, more and more related service companies are beginning to try to use 
smart transportation and smart distribution technologies. Through case analysis and literature 
analysis, Liu et al. [24] used intelligent models to illustrate the relationship between logistics and 
transportation and 5G IoT technology. 

Therefore, this article will focus on intelligent manufacturing services and, from a perspective of 
smartness, take intelligent manufacturing enterprises as an example to identify potential risks in the 
operations of each collaborating enterprise and in the process of engaging with consumers. It will 
also conduct assessments and analyses to ensure the efficient and smooth operation of every stage 
(intelligent service node) within the entire smart supply chain system. As shown in Figure 1, the smart 
service nodes will be referenced according to the elements in the Supply-Chain Operations 
Reference-model (SCOR), such as planning, procurement, production, distribution, and sales, and will 
correspond to intelligent forecasting nodes, smart procurement nodes, smart warehousing nodes, 
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intelligent manufacturing nodes, smart transportation nodes, smart distribution nodes, and external 
environment. 

Fig. 1. The hierarchical framework of intelligent manufacturing services 

 
2.4 Risk factors of SSC 

Based on the different intelligent service nodes in Figure 1, in this section we will collect and 
summarize the risk factors that affect the smart supply chain by literature research. 

Before the product put into production, the product needs to be designed, and the company 
needs to design according to the preferences of consumers. At this stage, there exists a prediction 
risk. This includes the miscellaneous data sources of product designing requirements and the short 
timeliness of maintenance [1]. Besides, inadequate identification of customer core needs will also 
have an impact on the performance and quality of the entire supply chain. Then, the analysis of the 
market situation is inaccurate. The competition of enterprises should not only be managed internally, 
but also be analyzed externally, including the market and competitors [25]. 

As one of the important stages in the supply chain system, suppliers are involved in the smart 
storage of goods and the smart procurement with other collaborative enterprises. Smart storage is 
the product of warehouse automation. It works together through automation and Internet 
technologies to improve the productivity and efficiency of the warehouse, minimize the number of 
labor and reduce errors at the same time. With the development and progress of information 
technology, many enterprises apply radio frequency identification (RFID) and automatic guided 
vehicle (AGV) to warehouse management. If these technologies are not mature or have problems in 
the application process, they will cause huge losses to the enterprise. For example, the RFID chip may 
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be attacked in the process of reading, and the electronic tag is misread. In addition, the AGV path 
error may cause car collision and other risks, which increases the losses of enterprises. 

The risk of smart procurement refers to the possibility that some technologies of suppliers or 
suppliers' networks may be damaged by unexpected conditions in the process of obtaining some 
resources to meet the needs of consumers. This possibility is hidden in every stage of procurement. 
For example, the procurement information cannot be symmetrical in time [20] and the information 
in the purchaser's database is not updated in time [20]. Besides, Weak traceability and supervision 
[22] may lead to obvious material loss and poor control of material quality during procurement and 
transportation. 

Nowadays, more and more manufacturers are integrating intelligent manufacturing technology 
into their production processes. Intelligent manufacturing is an advanced production method based 
on the deep integration of new generation information technology and advanced manufacturing 
technology, running through various manufacturing activities such as design, production, 
management, and service. It has characteristics such as self-awareness, decision-making, execution, 
adaptation, and self-learning, aiming to improve the quality, efficiency, and core competitiveness of 
the manufacturing industry. In various stages of the intelligent manufacturing process, there are also 
different risks. For example, the industrial control equipment is difficult to be safely controlled and 
data fusion of incorrect information [26]. Besides, the loss of production data [26] will also lead to 
abnormal production. Isolated and disconnected systems [27] are also the problems of many 
manufacturing enterprises. More and more enterprises invest in ERP, WMS, MES and other systems 
for production management, but each system is isolated, resulting in disordered production lines and 
low efficiency. A large number of data packets are injected, resulting in network congestion [27]. 
When a large number of data packets are poured into the manufacturing process, it will cause 
network congestion, and even paralysis in serious cases, which will have a huge impact on 
production. The system control network is attacked [28]. There are a wide variety of execution 
equipment, control equipment and sensor equipment in the intelligent manufacturing system, and 
there are widespread security vulnerabilities. The introduction of Internet technology will expose the 
equipment to the network and make it easier to be attacked through the Internet. 

Smart transportation mainly relies on the rapid development of the Internet of things in recent 
computer technology efficiently, and even applies to the entire traffic management system. 
However, the real-time performance of traffic information is not up to standard [24], and the lack of 
accumulation of smart logistics technologies [29] has become a factor hindering the development of 
smart transportation system. At present, the amount of traffic information collection cannot support 
smart transportation, active transportation and all-round traffic information services, which will 
greatly affect the efficiency of transportation. In addition, the imperfect institutionalization of 
transportation management is also a significant risk. 

The seller is responsible for direct communication with consumers and delivery. But there are still 
some risks affecting the consumer satisfaction. During the delivery of goods, the privacy of customers 
is easy to leak [27]. When customers' privacy is leaked, it will endanger customers' safety and affect 
customers' satisfaction. Then, the tracking ability of distribution information is poor [30], and the 
information of goods cannot be tracked in time, which will lead to low distribution efficiency and 
security risks. In addition, the poor or affected GPS signal [30] will also affect the efficiency of goods 
distribution. GPS technology can track the driving status, driving path and other information of 
transportation vehicles in real time. If GPS is affected, it will not be able to feed back the problems in 
the process of order in time. 

In addition to the five stages mentioned above, the operation of the whole supply chain system 
is also affected by external links. This paper mainly puts forward two external risks: first, the 
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adjustment of industrial policies [31] has greatly affected the development of the industry, and 
different policies will directly affect the operation level and economic benefits of enterprises. 
Secondly, natural disasters or emergencies [31] will also hinder the normal operation of the supply 
chain system. Natural disasters mainly include meteorological disasters, geological disasters, marine 
disasters, diseases and other irresistible factors. Emergencies include large-scale diseases, epidemic 
situations, etc. 

In order to better show the risk factors involved in different stages, this section classifies and 
summarizes them as shown in Table 1. 

 
Table 1 
The risk factors of smart supply chain in intelligent manufacturing services 

 Risk 
categories 

Details of risks 
Relevant 
Literatures 

 

R
is

k 
fa

ct
o

rs
 o

f 
SS

C
 in

 IM
S 

Product 
designing 

FR1: Inaccurate market situation analysis [25]  

FR2: Inadequate identification of customer core needs [25]  

FR3: Miscellaneous sources of customer demand data [1]  

FR4: Short message maintenance and fast failure [1]  

Supplier 

SP1: Purchase information cannot be symmetrical in time [20]  

SP2: The purchaser's database information was not updated in 
time [20] 

 

SP3: Weak traceability and supervision of procurement [22]  

SS1: Misreading of electronic labels [21]  

SS2: RFID chip is attacked [21]  

SS3: The path route of AGV is error [22]  

Manufacture 

IM1: Industrial control equipment is difficult to be safely 
controlled [26] 

 

IM2: Fusion of wrong data [26]  

IM3: Data loss [26]  

IM4: Isolation of the system [27]  

IM5: Net jam because of massive data packets injection [27]  

IM6: System control network is attacked [28]  

Logistics 
provider 

ST1: The real-time performance of traffic information is not up to 
standard [24] 

 

ST2: Low level of intelligent logistics technology [29]  

ST3: Imperfect institutionalization of transportation 
management [29] 

 

Seller 

SD1: Poor tracking ability of distribution information [30]  

SD2: The privacy is leaked [27]  

SD3: Poor GPS signal or affected [30]  

Environment 
ER1: Adjustment of industrial policies [31]  

ER2: Natural disasters or emergencies [31]  

2.5 Methods for risk evaluation 
Risk management is the process of identifying, assessing and responding to potential risks. It 

involves a comprehensive analysis and assessment of risks and taking appropriate measures to 
reduce or control the occurrence and impact of risks. Risk management is important for organizations 
to make informed decisions in uncertain environments and reduce potential risks and losses. 
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Govindan [32] used the traditional DEMATEL method to prioritize the risks faced by third-party 
logistics service providers through threshold comparison, and analyzed the impact between different 
risk categories. Rajesh [33] studied risk drivers in electronic supply chains. They used the gray-
DEMATEL method to determine and construct a causal relationship graph between risk drivers. 
Sreedevi [34] conducted a research on supply chain flexibility using structural equation modeling to 
mitigate supply risk, manufacturing process risk, and delivery risk in the supply chain. Rostamzadeh 
[35] constructed a new research framework for sustainable supply chain risk management and 
combined fuzzy TOPSIS and fuzzy Criteria Importance Through Inter-criteria Correlation (CRITIC) 
methods to analyze and study 44 risk factors. Based on the Failure mode and effects analysis (FMEA) 
method, Wan [36] combines rough sets with the Technique for Order Preference by Similarity to an 
Ideal Solution (TOPSIS) method to deal with fuzzy information and the issue of risks' weights. Hansen 
[37] conducts research on climate risks affecting agricultural poverty alleviation through a range of 
risk-reducing agricultural production technologies and practices and interventions. Abdel-Basset et 
al. [38] proposed a combination of plithogenic multi-criteria decision-making approach based on the 
TOPSIS and CRITIC methods and conducted an important ranking of factors in sustainable supply 
chain risk management. Munir [39] used a covariance-based structural equation model to test the 
proposed hypotheses and explore the connection between supply chain integration and supply chain 
risk management to improve the operational performance of enterprises. Liu [40] used hierarchical 
cluster analysis method to identify risk factors in smart supply chain and established a risk assessment 
index system to reduce potential losses in intelligent manufacturing. Lin [41] conducted detailed 
research on risk prediction and assessment using machine learning methods such as Artificial neural 
networks (ANNs) Support vector machine (SVM) Random forest (RF) and Bayesian network (BN) 
under different fuzzy set theory environments. Based on the current situation of China's intelligent 
manufacturing industry, Li [42] constructed an evaluation index system for intelligent manufacturing 
system supplier selection, and used the PLS-SEM method to establish an evaluation model for 
intelligent manufacturing system supplier selection risk. Seker [43] regarded the spread of the 
epidemic as a multi-complex decision-making problem and combined the interval-valued q-rung 
orthopair fuzzy set with the COmplex PRoportional Assessment (COPRAS) method. And the risks of 
epidemic spread were assessed from social, technical, economic and governmental aspects. Cheng 
et al. [44] assessed and identified the risks of factors affecting the historical concentration of 
microcystin in Taihu Lake, China, through sampling and chemical element analysis. Reshad [45] 
integrates the TOPSIS and VISekriteri-jumska optimizacija i KOmpromisno Resenje (VIKOR) methods 
to identify and assess the obstacles to sustainable supply chain risk management, and proposes 
strategies to overcome the obstacles. Lima et al. [46] proposed a theoretical framework on risk and 
uncertainty management in sustainable supply chains to help scholars and practitioners understand 
the challenges of circular economy implementation. Bekishev [22] identifies potential hazards 
associated with AGV/AMR robots, and in order to simplify and increase work efficiency, this article 
proposes a risk management algorithm suitable for high-tech projects. Minguito et al. [47] used the 
Gray Relational Analysis (GRA) method to verify the effectiveness of the FMEA method in identifying 
priority issues related to supply chain risks.  

This article summarizes the previous literature in Table 2 below: 
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Table 2 
Summary of previous literatures 

No. Authors (Year) Values Research Methods Application 

1 
Govindan et al. 
[32] 

Real value DEMATEL 
The interrelationships of third party 
logistics service providers and 
customers 

2 
Rajesh et al. 
[33] 

Grey value Grey-DEMATEL 
Causality of risk drivers in electronic 
supply chains 

3 
Sreedevi et al. 
[34] 

Real value 
Structural equation 
modeling 

The moderating role of supply chain 
flexibility in risk mitigation 

4 
Rostamzadeh 
et al. [35] 

Triangular fuzzy 
value 

Fuzzy TOPSIS- CRITIC 
Sustainable supply chain risk 
management 

5 Wan et al. [36] Rough fuzzy vale Rough-TOPSIS FMEA 
Risk Assessment in Intelligent 
Manufacturing Process 

6 
Hansen et al. 
[37] 

Real value 

Risk-reducing 
agricultural production 
technologies and 
practices 

Impact of climate risk management on 
crop production 

7 
Abdel-Basset et 
al. [38] 

Triangular 
neutrosophic 
value 

Plithogenic TOPSIS- 
CRITIC model  

Sustainable supply chain risk 
management 

8 
Munir et al. 
[39] 

Real value 
Structural equation 
modeling 

The operational performance of 
companies 

9 Liu et al. [40] Real value 
The hierarchical 
clustering analysis 

Smart Supply Chain Risk Assessment in 
Intelligent Manufacturing   

10 Lin et al. [41] Fuzzy values ANNs, SVM, RF, BN 
The application of machine learning 
methods in risk prediction and 
assessment 

11 Li et al. [42] Real value 
PLS-SEM (Least squares 
structural equation 
model)  

Risk Assessment in Supplier Selection 
for Intelligent Manufacturing 

12 Seker et al. [43] 
Interval-valued q-
ROF 

COPRAS  
Risk assessment to overcome the 
pandemic 

13 
Cheng et al. 
[44] 

Real value 
Sediment sampling, 
Geochemical element 
analysis  

Risk assessment and identification of 
factors influencing the historical 
concentrations of microcystin 

14 
Reshad et al. 
[45] 

Real value TOPSIS, VIKOR 
Evaluating barriers and strategies to 
sustainable supply chain risk 
management 

15 Lima et al. [46] Real value Delphi  
Risk and uncertainty management in 
circular supply chains  

16 
Bekishev et al. 
[22] 

Real value FMEA 
Risk Analysis for the Implementation 
of AGV/AMR Robotic T echnologies 

17 
Minguito et al. 
[47] 

Real value FEMA, GRA 
Identifying priority issues relating to 
the supply chain risks 

18 This article Lq-ROF value Lq-ROF-DEMATEL Risk factors assessment of SSC in IMS 
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2.6 Research gaps and Research objectives 
The research gaps are summarized as follows: (1) In the existing literature, supply chains or smart 

supply chains are directly used as the research object to conduct risk factor analysis (e.g., Liu et al., 
2021). Currently, there are no articles that use smart manufacturing services as a background or 
research system. (2) Although the classic DEMATEL method is often used in factor analysis research 
(e.g., Govindan et al., 2016), it cannot handle the uncertainty of information in the evaluation 
process. 

Considering the aforementioned research gap, this paper aims to identify the risk factors of SSC 
in IMS and adopt a scientific and comprehensive method to conduct risk assessment. Firstly, this 
article draws on the SCOR model to propose corresponding intelligent service nodes and a framework 
for identifying risk factors. Secondly, we combine linguistic q-ROFS with the classic DEMATEL method 
to analyze the risk factors of each smart service node. In order to solve the uncertainty and ambiguity 
in the evaluation process, this article introduces q-ROFS; in addition, combining linguistic set with q-
ROFS can make the evaluation process more flexible. 

 
3. Methodology 
3.1 Linguistic q-rung orthopair fuzzy sets 

In order to deal with the linguistic fuzzy decision-making problem efficiently, Liu and Liu [49] 
combined linguistic term sets with q-rung orthopair fuzzy sets to obtain a new hybrid evaluation set, 
which is the Linguistic q-rung orthopair fuzzy sets (Lq-ROFS). 

Definition 1 [48]. Suppose  1 2
, ,...,

n
X x x x=  is a finite set, and  1 2

, ,...,
t

S s s s=  is a linguistic term set. 

Then the linguistic q-rung orthopair fuzzy set A  defined on X  can be expressed as: 
{ , ( ), ( ) }

u v
A x s x s x x X=    (1) 

where 
 0,

( ), ( )
u v t

s x s x S , ( )
u

s x  and ( )
v

s x  represent the degree of linguistic membership and 

the degree of linguistic non-membership, respectively. For any x X , the condition ( )1
q q q

u v t q+    

is always established, then, ( ),
u v

a s s=  can be called as the linguistic q-rung orthopair fuzzy number 

(Lq-ROFN), and we can regard  0,t
X  as the set of all Lq-ROFNs on the basis of  0,t

S . Besides, the degree 

of linguistic indeterminacy for A can be defined as 
( )

( )
q q q qA

t u v
x s

− −
= . 

With the change of the value of the parameter q, the Lq-ROFS will also degenerate into other 
forms. When q = 1, the Lq-ROFS will degenerate into the linguistic intuitionistic fuzzy set (LIFS), and 
when q = 2, the Lq-ROFS will degenerate into the linguistic Pythagorean fuzzy set (LPyFS). 

Definition 2 [49]. Let ( )1 1 1
,

u v
a s s= , ( )  2 2 2 0,

,
u v t

a s s X=   be any two Lq-ROFNs, where 0＞ , then the 

foundational operational rules of Lq-ROFNs are as follows: 

1
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1
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 
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  (5) 

Definition 3 [49]. Let ( )1 1 1
,

u v
a s s= , ( )  2 2 2 0,

,
u v t

a s s X=   be any two Lq-ROFNs, then the standardized 

Hamming distance for 1
a  and 2

a  is shown below: 

( )
1 2 1 2 1 2

1 2
,

2

q q q q q q

q

u u v v
d a a

t

 − + − + −
=   (6) 

Definition 4 [49]. Let ( )  0,
,

u v t
a s s X=   be a Lq-ROFN, then the score function S(a) and accurate function 

H(a) are defined as follows: 

( )
2

q q q

q
t u v

S a
+ −

=   (7) 

( )
q q q

H a u v= +   (8) 

Definition 5 [49].Let ( )1 1 1
,

u v
a s s= , ( )  2 2 2 0,

,
u v t

a s s X=   be any two Lq-ROFNs, 

(1) if S(a1) ＞S(a2), then a1 ＞a2, which means a1 is better than a2. 
(2) if S(a1) =S(a2), then  

if H(a1) ＞H(a2), then a1 ＞a2, which means a1 is better than a2. 
if H(a1) =H(a2), then a1 = a2, which means a1 is equal to a2. 
Definition 6. Let ( )   ( )0,

, 1, 2,...,
i ui vi t

a s s X i n=  =  be a Lq-ROFNs set, taking any q > 0, the value of the 

aggregation after applying the weighted linguistic q-rung orthopair fuzzy averaging operator (WLq-ROFA) is 
still Lq-ROFN, and the aggregation value is as follows: 

( ) ( )( )

( )

( )

( )
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1
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t
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=
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 
 − −
 
 
 
 
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−


 



 (9) 

 
3.2 Lq-ROF-DEMATEL 

In this section, we will fuse the Lq-ROFS with the Decision-making Trial and Evaluation Laboratory 
(DEMATEL) method to analyze the risk factors of the smart supply chain for intelligent manufacturing services. 

Step 1. Constructing the initial direct influence matrix 
Each expert will compare the interactions of each of the two risk factors based on the linguistic term set S 

= {s0 = super low, s1 = very low, s2 = low, s3 = medium, s4 = high, s5 = very high, s6= super high}. The eth expert's 

evaluation for the degree to which risk factor i affects risk factor j is represented as ( ),
e e e

ij uij vij
a s s= , where, i, j = 

1, 2, …, n; e = 1, 2, …, k. Then, the initial direct influence matrix can be expressed as ,
e e e e

ij uij vij
n n n n

A a s s
 

= = . 

Step 2. Calculation of expert weights 
In the process of risk assessment, the evaluations of experts are very important. In this step, we will apply 

the similarity measure between linguistic fuzzy matrices to calculate the weights of each expert. 
Based on the initial direct influence matrix of k experts, the total average initial influence matrix A* is 

obtained by combining Eq. (2) and Eq. (4) as follow: 
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where, *

1

1 k e

ij e ij
a a

k
=

=  . 

Then, the standardized Hamming distance for each expert's initial direct influence matrix and the total 
average initial influence matrix can be calculated by using Eq. (6). The similarity measure will be obtained as 
follow: 

( )
( )

( ) ( )( )

*

1 1*

* *

1 1

, ( )
,

, , ( )

n n e c

i j ij ije

n n e e c
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= =

=
+

 

 
  (10) 

where, ( ) ( )* * *
,

c

ij vij uij
a s s= , and ( )*

0 , 1
e

SM A A  . 

Finally, we can use the obtained similarity measure to calculate the weight of each expert, as shown below 
*

*

1

( , )
, 1, 2,..., .

( , )

e

e k e

e

SM A A
w e k

SM A A
=

= =


  (11) 

Step 3. Calculation of aggregated direct influence matrix 
This paper will use Eq. (9) to aggregate the initial direct influence matrix of each expert, and the aggregated 

direct influence matrix Â  will be calculated as follow: 
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Step 4. Standardization of the aggregated direct influence matrix 

In this step, we will divide the aggregated direct influence matrix Â  into two submatrix, linguistic 
membership direct influence matrix u

X  and linguistic non-membership direct influence matrix v
X . The 

formula of standardization is X=A×S, where 
1

1

1

max
n

j ij
i n

S
a

=
 

=


. And the submatrix can be represented as follows: 
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Step 5. Identification of the total relationship matrix 
The standardized linguistic membership and non-membership direct influence matrix are obtained in 

step4. And in this step, we will use T=X (I - X)-1 to calculate the total relationship matrix of the standardized 
submatrix, where I is the identity matrix. Then, we will aggregate the two sub-matrices, and the final total 
relationship matrix can be shown as follow: 
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After the total relationship matrix T is obtained, the score function of each group of linguistic fuzzy sets in 
the matrix can be calculated by Eq. (7), and the score function matrix of the total relation matrix is obtained 
as follow: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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Step 6. Calculation of the importance and contribution 
According to the score function matrix T*, we can obtain the impact degree ri and the affected degree cj 

of each risk factor. ri represents the sum of the i-th row in the matrix T*, then ri summarizes the direct and 
indirect impact of risk factor i on other risks (i.e. the impact degree of risk factor i). cj represents the sum of 
the j-th column in matrix T*, then cj summarizes the direct and indirect impact of other risk factors on risk 
factor j (i.e. the affected degree of risk factor j). And when i= j, (ri + cj) quantifies the importance of the influence 
that risk factor i has in the system, and (ri - cj) quantifies the contribution of criterion i as a cause or effect 
criterion in the system. 
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1
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=
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
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Step 7. Determination of the threshold value and drawing network directed graph 
Since the matrix T* represents the interaction between any two risk factors, it is necessary to set a 

threshold to filter some negligible effects. In this way, the threshold value is compared with the values of 
different elements in matrix T*. And only when it is greater than the threshold value, can the arrow be used 
in the directed graph to indicate that the risk factor i has an impact on the risk factor j. In this study, the 
threshold value is set as the average value of the elements in the matrix T*, and the value of (r + c, r - c) will 
be put into the coordinate system. 

 
4. Application 

At present, there are few articles that combine "service + manufacturing" and "intelligent + 
manufacturing" to do some researches. Due to the intelligent, technical and directional characteristics of 
intelligent manufacturing services, the stable operation of smart supply chain system is one of the key 
elements of intelligent manufacturing services. In other words, intelligent manufacturing services need the 
support of smart supply chain system. Therefore, for intelligent manufacturing services, this study takes 
intelligent manufacturing enterprises as an example to collect and analyze the risk factors in the whole smart 
supply chain system. In this paper, the risk factors are analyzed mainly through the scoring of evaluators. The 
evaluators are mainly experts and scholars in the fields of intelligent manufacturing services, smart supply 
chain and risk management. In addition, there are also experienced employees in relevant departments of the 
enterprise. 

In this section, we invite five experts to evaluate the collected risk factors, and use the Lq-ROF-DEMATEL 
model in Section 3 to calculate and analyze the evaluation results of the experts, and finally give the 
corresponding theoretical and practical suggestions. The details of the five experts are shown in Table 3. 
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Table 3 
The details of the invited experts. 

Number  
of experts 

Profile 
Professional 

expertise 
Years of experience 

1 
Supply chain 

manager 
Supply chain 
management 

Ten years 

1 IM manager 
IM development 

experience 
Ten years 

3 
Three experts 

from academia 
IMS technology 

and the SSC field 

One professor with ten years of 
experience; two associate 

professors with six years of 
experience 

 
Step 1. Firstly, the five experts will compare the degree of influence of 24 risk factors using Lq-ROFS to get 

the initial direct influence matrix. Each expert will evaluate each of the two risk factors based on their own 
experience and in accordance with the linguistic term in Section 3.2. The initial direct influence matrix of the 
first expert is shown below as an example. 
Matrix 1. The initial direct influence matrix 
(Detailed matrix information will be shown in the Appendix) 

0 0 4 3 2 1 2 1
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s s s s s s s s
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s s s s

s s s s s s s s
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= =  
 
 
 
  

 

Step 2. After obtaining the initial influence matrices of the five experts, the total averaging initial influence 
matrix A* is calculated and show in Matrix 2. Then, Eq. (10) and (11) are used to obtain the similarity measure 
(SM) between each expert's evaluation matrix and the total averaging matrix, as well as the weights (we) of 
the five experts, as shown in Table 4 below: 
Matrix 2. the total averaging initial influence matrix A* 

0.000 0.000 3.828 4.282 1.979 1.320 1.341 1.149

5.863 4.573 1.341 1.149

*

2.091 1.741 1.734 2.048

1.979 1.
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( ,
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A

s s s s

s s
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821 1.979 1.888 1.979 2.993 0.000 0.000
) ( , ) ... ... ( , ) ( , )s s s s s s
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 
 
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 
 
 
  

 

 
Table 4 
The weights (we) of five experts 

Expert 

1 2 3 4 5 

SM (Ae, A*) 0.5089 0.5305 0.5331 0.5223 0.5224 

we 0.1944 0.2027 0.2037 0.1996 0.1996 

Step 3. - Step 4. After obtaining the evaluation weights of the five experts, we aggregate the evaluation 
matrices of the five experts using the WLq-ROFA operator. The aggregated direct influence matrix Aagg is 
obtained, and then the elements in the matrix Aagg are divided into two, forming a membership sub-matrix as 
well as a non-membership sub-matrix, respectively. Finally, the normalized matrices are obtained as Matrix 3 
- 4. 
Matrix 3-4. The normalized matrices 
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0.0000 0.0636 ... ... 0.0328 0.0222
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Step 5. We compute the total relationship matrix of the two sub-matrices separately and combine them 
to obtain the total relation matrix T as shown in Matrix 5. After obtaining the total relationship matrix, the 
effects between the risk elements are equally enlarged, and finally the score function matrix T* of the total 
relationship matrix is calculated using Eq. (7) as shown in Matrix 6: 
Matrix 5. The total relation matrix T 

0.284 0.134 0.300 0.197 0.224 0.128 0.225 0.126

0.384 0.190 0.232 0.124

0.292 0.164 0.217 0.149
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Matrix 6. The score function matrix T* 

*

4.9208 4.8305 ... ... 4.9310 4.9334

4.8400 ... ... ... ... 4.9380
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Step 6. After obtaining the score function matrix T*, we will calculate the impact degree (ri), the affected 
degree (cj), the degree of center (ri + cj) and the degree of cause (ri - cj), as shown in Table 5 below: 
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Table 5 
The center and cause degree of risk factors 

Risk 
factors 

ri 
cj ri + cj ri - cj 

Risk 

factors 
ri cj ri + cj ri - cj 

FR1 117.49 115.75 233.25 1.74 IM3 115.58 115.28 230.86 0.30 
FR2 117.62 115.43 233.05 2.20 IM4 115.12 116.28 231.40 -1.16 

FR3 115.59 115.02 230.61 0.57 IM5 114.96 116.01 230.97 -1.04 
FR4 116.00 114.41 230.41 1.59 IM6 114.72 116.46 231.17 -1.74 
SP1 115.67 114.50 230.18 1.17 ST1 116.03 115.86 231.88 0.17 
SP2 115.60 114.86 230.46 0.74 ST2 116.38 117.26 233.64 -0.88 
SP3 115.09 115.56 230.65 -0.48 ST3 116.34 116.66 233.00 -0.32 

SS1 116.08 116.86 232.94 -0.78 SD1 116.00 115.93 231.94 0.07 

SS2 115.69 116.76 232.44 -1.07 SD2 117.31 117.07 234.38 0.24 

SS3 116.08 116.36 232.44 -0.27 SD3 116.06 116.82 232.88 -0.76 
IM1 115.07 115.92 230.99 -0.84 ER1 117.06 116.74 233.81 0.32 

IM2 115.42 115.59 231.01 -0.16 ER2 117.07 116.67 233.73 0.40 

 
Step 7. When the degree of center (ri + cj) and the degree of cause (ri - cj) are used as horizontal and vertical 

coordinates respectively, we can correspond each of the 24 risk factors to the axes, as shown in Figure 2: 
 

Fig. 2. Distribution of risk factors 
 
We will use the average (4.8334) of the values in the score function matrix T* as a threshold to determine 

the direction of the arrows in the directed graph by comparing these values of risk factors. And the network 
directed graph will be drawn for each stage (as shown in Figures 3 to 8). Besides, we can find, based on the 
network directed graph, that there are unidirectional and bidirectional arrows for the influence between risk 
factors. The unidirectional arrow indicates a single effect between two factors, while the bidirectional arrow 
indicates that two risk factors have a reciprocal effect. 
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5. Discussion 
In this section, we will analyze the risk factors in the conjunction with the risk network directed graphs at 

different stages and the relevant data obtained. 
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Fig. 3. The network directed graph of forecasting risk 

 
First, we will analyze the risk factors among different service nodes according to Figures 3 to 8. Based on 

the forecasting risk directed graph of the product design process, we can find that FR1 and FR2 as risks related 
to the market and consumer demand affect each stage of the supply chain system. And as the smart supply 
chain is an important system to break down the barriers between smart manufacturing service nodes, we 
need to analyze the risk factors affecting its operation. Inaccurate analysis of the market situation means that 
the supply chain system is unable to accurately predict changes and trends in market demand, leading to 
possible deviations in production planning, inventory management and logistics arrangements, increasing the 
risk of supply chain operations. Beside inadequate identification of customers' core requirements may result 
in the supply chain system failing to meet customer expectations, and product quality and delivery time may 
not be in line with market demand, thus reducing customer satisfaction. 
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Fig. 4. The network directed graph of SP and SS 

 
SP1 and SP2 mainly unilaterally affect the warehousing service nodes and transportation service nodes. If 

the procurement information is not symmetrical in time, the providers of warehousing services and 
transportation services will not be able to accurately know the quantity, specification, delivery time and other 
key information of the goods. This may lead to forecasting and planning errors, and the inability to make 
reasonable warehousing and transportation arrangements, affecting the timeliness and efficiency of services. 
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Besides, if the database information is not updated in time, there may be a backlog or shortage of goods, 
affecting the normal operation of the supply chain.  

SS1 and SS3 affect the manufacturing service nodes and the transportation service nodes. Electronic label 
misreading may lead to wrong production process and operation. If the information on the electronic label is 
incorrectly read or cannot be read, it may lead to errors in the process on the production line, thus delaying 
the production schedule and delivery time. Misreading of critical information (e.g., specifications, part 
numbers, etc.) on electronic labels may lead to non-compliance with product specifications and quality 
problems. AGV path errors will result in abnormal action or downtime of automated equipment. If an AGV 
encounters a path error while performing a task, there may be interruptions in equipment operation, 
production line downtime, etc., which in turn affects the operational efficiency and capacity of the entire 
intelligent manufacturing system. 
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Fig. 5. The network directed graph of IM 

 
As shown in Figure 5, IM1-IM6 have less impact on other service nodes. However, if there is a problem in 

the manufacturing process, it will lead to a decrease in the efficiency of the subsequent transportation and 
distribution service nodes. 
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Fig. 6. The network directed graph of ST 

 
For the risk that exists in the logistics intelligent service node, it is mainly reflected in the lack of 

information technology and intelligent equipment. This type of risk mainly affects the warehouse service 
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nodes and the manufacturing service nodes, and is mainly reflected in situations such as cargo crushing or out-
of-stocks. 
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Fig. 7. The network directed graph of SD 

 
Regarding the sales service node, the main issue lies in the problem of privacy leakage. Privacy leakage 

problems can lead to a crisis of trust between intelligent manufacturing service companies, and at the same 
time, customers may also experience reduced satisfaction due to information leakage. 

The external environment and other service nodes mutually influence each other, in other words, they 
have a complementary relationship. Some business phenomena can lead to the establishment of new policies, 
and policies can also impact the development of businesses. 
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Fig. 8. The network directed graph of ER 

 
Then, according to the values of the impact degree (ri) shown in Table 3, we will find that FR2 (insufficient 

identification of core customer needs) is the factor with the highest impact on other risk factors. For customer-
centric intelligent manufacturing service enterprises, customer demands are the prerequisite for all operations. 
Failing to accurately comprehend customer requirements and preferences makes it challenging for a business 
to establish appropriate product positioning. This can potentially result in unreasonable product designs, 
redundant or missing functionalities, thus affecting the market competitiveness of the product. Furthermore, 
failing to fully understand the core needs of customers, a business may be unable to grasp market changes 
and potential opportunities, impacting the company's innovation capability and product development 
direction. This could potentially result in the company lagging behind its competitors in technology and missing 
out on market opportunities. Therefore, this article proposes to integrate customer opinions and ideas into 
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every service node of the smart supply chain system, enhancing customer satisfaction and overall production 
efficiency in all aspects. 

According to the degree of center (ri + cj) shown, the factor with the highest level of importance is SD2 
(The privacy is leaked). As the level of intelligence in the supply chain system gradually increases, enterprises 
inevitably need to assess and control such network information data. Improper handling may potentially lead 
to the leakage of a significant amount of sensitive information, such as supplier information, customer data, 
transaction records, and more. If the system is subjected to an attack, hackers may steal this data for illegal 
purposes, leading to issues such as the leakage of company and personal privacy, as well as trade secrets. 
Furthermore, the source and continuity of information data are also essential factors that deserve attention. 
To address such issues, it is necessary to conduct research on the quality of information, which is one of the 
challenges that needs to be resolved after the intelligence of the supply chain system is enhanced. 

 
6. Research implications 
6.1 Theoretical implications 

This article has the following theoretical significance for the research field of risk assessment of IMS. First, 
this paper identifies the risk factors in smart supply chain in IMS that will affect the operation of the system. 
Risk factors include intelligent forecasting nodes, smart procurement nodes, smart warehousing nodes, 
intelligent manufacturing nodes, smart transportation nodes, smart distribution nodes, and external 
environment. Comprehensive factor analysis provides relevant insights for both smart manufacturing services 
and smart supply chains. Secondly, this paper combines linguistic q-ROFS with the classic DEMATEL method 
to solve the problems of uncertainty and ambiguity in the field of evaluation research. 

 
6.2 Managerial implications 

In Section 5, we analyzed the assessment results of risk factors. Based on the series of results obtained, 
we will provide some managerial implications from both the internal and external perspectives of the 
intelligent manufacturing service system. 

(1) When a business is unable to efficiently and accurately gather sufficient customer information, there 
are several ways to improve data collection. This can be done through enhancing the website, survey 
methods, and customer feedback channels to increase the sources of data. In this way, we could 
ensure a more comprehensive acquisition of customer information. Additionally, existing data can be 
synthesized, and data mining and analysis techniques can be employed to infer potential missing 
information, allowing for a better understanding of customer needs and behavior. Furthermore, 
businesses can offer value-added services. This means that companies can provide personalized 
recommendations, professional advice, discounts, or reward programs to encourage customers to 
voluntarily share information. 

(2) When customer information is leaked, we should quickly find the source of the information leak, shut 
down the affected system, repair the vulnerability, suspend related services and take emergency 
measures quickly. Second, we should investigate and identify vulnerabilities: Look inside the system 
to identify vulnerabilities and security issues that lead to data breaches. Subsequently, steps are taken 
to fix these vulnerabilities to prevent future information leaks. In addition, companies should provide 
compensation and additional security measures to customers to restore their trust. 

(3) Regarding risks encountered in the intelligent manufacturing process, companies should ensure the 
security of industrial control equipment, including regularly updating the software and firmware of 
the equipment, configuring strong passwords and access control policies, and using anti-virus software 
and other protective measures. In addition, intelligent manufacturing companies must ensure good 
connectivity with other service nodes. We can establish a unified information platform to integrate 
information from various nodes to achieve data sharing and business process collaboration. 

(4) In addition to internal management of the system, enterprises should also strengthen their ability to 
adapt to the external environment. We can establish a dedicated team responsible for monitoring 
policy changes related to intelligent manufacturing and intelligent manufacturing services. Corporate 
executives should identify opportunities arising from policy changes and actively exploit these 
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opportunities to promote corporate development. For example, the government may provide funding, 
subsidies, or R&D support to promote innovation in intelligent manufacturing. In addition, companies 
should maintain sufficient flexibility and be able to quickly adjust their business models and strategies 
to adapt to policy changes. 

 
7. Conclusion 

This paper takes the integration of "intelligent manufacturing" and "service-oriented manufacturing" as 
the research object, starting from the smart supply chain system, and studies the risk issues of smart service 
nodes in the smart supply chain oriented to smart manufacturing services. By combining the Lq-ROFS and the 
traditional DEMATEL method, a new Lq-ROF-DEMATEL analysis system was constructed to conduct a 
comparative analysis of 24 risk factors. Finally, it was concluded that the risk factors that affect the smart 
supply chain to a high degree include insufficient identification of customers' core needs, improper processing 
of network information data, leakage of customer privacy, and the impact of the policy environment. There 
are two shortcomings of this article: first, the identification of risk factors mainly comes from literature search, 
without objective screening and analysis; second, the q-ROFS is two dimensions, and there is still room for 
expansion. Therefore, future work is mainly to use models to screen risk factors, and secondly, to combine the 
larger-dimensional fuzzy environment with the DEMATEL method to study the influence between factors. 
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