Assessing the Academic Performance of Turkish Universities in 2023: A MEREC-WEDBA Hybrid Methodology Approach
DOI:
https://doi.org/10.31181/jopi21202422Keywords:
The Ranking of University Performance, Multi-Criteria Decision Making, The Method based on the Removal Effects of Criteria Method, The Weighted Euclidean Distance-Based Approach Method, MEREC, WEDBAAbstract
Research and reporting on university rankings serve as valuable tools for students in evaluating universities and understanding their current performance status. Within academic literature, university rankings are established using diverse criteria across various domains, each carrying varying degrees of importance. This study adopts a multi-criteria decision-making (MCDM) perspective to analyze the academic performance ranking of Turkish Universities in 2023. Data sourced from the 2023 reports of sixty-one universities from Times Higher Education (THE) serve as the basis for this research, with THE indicators—teaching, research, citations, industry income, and international outlook—considered as primary research criteria. The Method based on the Removal Effects of Criteria (MEREC) method is employed to ascertain criterion weights, while the Weighted Euclidean Distance-Based Approach (WEDBA) method is utilized for university ranking. The study identifies "citations" as the criterion of highest significance. Notably, the top-performing universities in the ranking include Çankaya University, Fırat University, and Bahçeşehir University. Furthermore, by comparing the rankings from this study with THE university rankings, the research offers tailored suggestions for universities. This study underscores the importance of deriving criterion weights from university performance datasets rather than relying on fixed weights, facilitating a more nuanced approach to university rankings. Moreover, it presents THE performance rankings for sixty-one Turkish universities, offering valuable insights for strategic planning within the university sector.
Downloads
References
Anowar, F., Helal, M. A., Afroj, S., Sultana, S., Sarker, F., & Mamun, K. A. (2015). A critical review on world university ranking in terms of top four ranking systems. In K. Elleithy &T. Sobh (Eds.), New trends in networking, computing, e-learning, systems sciences, and engineering (1st ed., pp. 559-566). Springer. https://doi.org/10.3390/sym1208135110.1007/978-3-319-06764-3_72.
Jabjaimoh, P., Samart, K., Jansakul, N., & Jibenja, N. (2019). Optimization for better world university rank. Journal of Scientometric Research, 8(1), 18-20. https://doi.org/10.3390/sym1208135110.5530/jscires.8.1.3.
USNWR. (2022). 2022-2023 Best Global Universities Rankings. US News and World Report Best Global University Ranking. https://www.usnews.com/education/best-global-universities/rankings (Access Date:19.05.2024).
ARWU. (2022). 2022 Academic Ranking of World Universities. Shanghai Ranking Consultancy. https://www.shanghairanking.com/rankings/arwu/2022 (Access Date:19.05.2024).
URAP. (2022). World Ranking. Middle East Technical University Informatics Institute. https://urapcenter.org/Rankings/2021-2022/World_Ranking_2021-2022 (Access Date:19.05.2024).
QS. (2022). QS World University Rankings methodology. Quacquarelli Symonds World University https://www.topuniversities.com/qs-world-university-rankings/methodology (Access Date:19.05.2024).
THE. (2022). World University Rankings 2023. Times Higher Education World University Ranking. https://www.timeshighereducation.com/world-university-rankings/2022/world-ranking (Access Date:19.05.2024).
Fauzi, M. A., Tan, C. N. L., Daud, M., & Awalludin, M. M. N. (2020). University rankings: A review of methodological flaws. Issues in Educational Research, 30(1), 79-96.
Ömürbek, N., & Karataş, T. (2018). Girişimci ve yenilikçi üniversitelerin performanslarinin çok kriterli karar verme teknikleri ile değerlendirilmesi. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 10(24), 176-198. https://doi.org/10.20875/makusobed.414685.
Salimi, N., & Rezaei, J. (2015). Multi-criteria university selection: Formulation and implementation using a fuzzy AHP. Journal of Systems Science and Systems Engineering, 24(3), 293-315. https://doi.org/10.1007/s11518-015-5271-3.
Birol, Y. E., & Ulutaş, A. (2018). Bütünleşik çok kriterli karar verme modeli ile türkiye’deki üniversitelerin ödenek ve harcama açisindan performans analizi. Akademik Araştırmalar ve Çalışmalar Dergisi, 10(19), 349-363. https://doi.org/10.20990/kilisiibfakademik.400956.
Aliyev, R., Temizkan, H., & Aliyev, R. (2020). Fuzzy analytic hierarchy process-based multi-criteria decision making for universities ranking. Symmetry, 12(8), 1351. https://doi.org/10.3390/sym12081351.
Teber, A. & Karakaş, A. (2019). Ranking alternative energy resources technology programs in Türkiye based on the methods of multi criteria decision making analysis. Bolu Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 20(3), 1459-1479. https://doi.org/10.17240/aibuefd.2020..-601398.
Demir, G. (2021). Vakıf üniversitelerinde akademik performans analizi: Critic-Wedba bütünleşik model uygulaması. Uluslararası İktisadi ve İdari Akademik Araştırmalar Dergisi, 1(1), 39-50.
Toslak, M., Aktürk, B., & Ulutaş, A. (2022). MEREC ve WEDBA Yöntemleri ile Bir Lojistik Firmasının Yıllara Göre Performansının Değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi, (33), 363-372. https://doi.org/10.31590/ejosat.1041106.
Ömürbek, N., Karaatli, M., & Yetim, T. (2014). Analitik hiyerarşi sürecine dayalı TOPSIS ve VIKOR yöntemleri ile ADIM üniversitelerinin değerlendirilmesi. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 31(1), 189-207. https://doi.org/10.20875/makusobed.414685.
Ömürbek, N., Delibaş, D., & Altin, F. G. (2017). Entropi temelli Maut yöntemine göre devlet üniversiteleri kütüphanelerinin değerlendirilmesi. Selçuk Üniversitesi Sosyal ve Teknik Araştırmalar Dergisi, (13), 72-89.
Parlar, G., & Palanci, O. (2020). Çok kriterli karar verme yöntemleri ile dünya üniversitelerinin performanslarinin değerlendirilmesi. Süleyman Demirel Üniversitesi Vizyoner Dergisi, 11(26), 203-227. https://doi.org/10.21076/vizyoner.657718.
Organ, A., & Kaçaroğlu, M. O. (2020). Entropi ağırlıklı TOPSIS yöntemi ile Türkiye’deki vakıf üniversiteleri’nin değerlendirilmesi. Pamukkale İşletme ve Bilişim Yönetimi Dergisi, 7(1), 28-45.
Ozdagoglu, A., Ulutas, A. & Keles, M. K. (2020). The ranking of Turkish universities with CoCoSo and MARCOS. In Appolloni et al. (eds). Proceedings of the Third EBOR Conference 2020, (pp. 374-392).
Ecer, F., & Zolfani, S. H. (2022). Evaluating economic freedom via a multi-criteria MEREC-DNMA model-based composite system: case of OPEC countries. Technological and Economic Development of Economy, 28(4), 1158-1181. https://doi.org/10.3846/tede.2022.17152.
Ecer, F., & Aycin, E. (2023). Novel comprehensive MEREC weighting-based score aggregation model for measuring innovation performance: The case of G7 countries. Informatica, 34(1), 53-83. https://doi.org/10.15388/22-INFOR494.
lutaş, A., Stanujkic, D., Karabasevic, D., Popovic, G., & Novaković, S. (2022). Pallet truck selection with MEREC and WISP-S methods. Strategic Management-International Journal of Strategic Management and Decision Support Systems in Strategic Management, 27(4). https://doi.org/10.5937/StraMan2200013U.
Simic, V., Gokasar, I., Deveci, M., & Švadlenka, L. (2022). Mitigating Climate Change Effects of Urban Transportation Using a Type-2 Neutrosophic MEREC-MARCOS Model. IEEE Transactions on Engineering Management, 71, 3233 - 3249. https://doi.org/10.1109/TEM.2022.3207375.
Haq, R. S. U., Saeed, M., Mateen, N., Siddiqui, F., Naqvi, M., Yi, J. B., & Ahmed, S. (2022). Sustainable material selection with crisp and ambiguous data using single-valued neutrosophic-MEREC-MARCOS framework. Applied Soft Computing, 128, 109546. https://doi.org/10.1016/j.asoc.2022.109546.
Rani, P., Mishra, A. R., Saha, A., Hezam, I. M., & Pamucar, D. (2022). Fermatean fuzzy Heronian mean operators and MEREC‐based additive ratio assessment method: An application to food waste treatment technology selection. International Journal of Intelligent Systems, 37(3), 2612-2647. https://doi.org/10.1002/int.22787.
Shanmugasundar, G., Sapkota, G., Čep, R., & Kalita, K. (2022). Application of MEREC in Multi-Criteria Selection of Optimal Spray-Painting Robot. Processes, 10(6), 1172. https://doi.org/10.3390/pr10061172.
Mishra, A. R., Saha, A., Rani, P., Hezam, I. M., Shrivastava, R., & Smarandache, F. (2022). An integrated decision support framework using single-valued-MEREC-MULTIMOORA for low carbon tourism strategy assessment. IEEE Access, 10, 24411-24432. https://doi.org/10.1109/ACCESS.2022.3155171.
Ivanović, B., Saha, A., Stević, Ž., Puška, A., & Zavadskas, E. K. (2022). Selection of truck mixer concrete pump using novel MEREC DNMARCOS model. Archives of Civil and Mechanical Engineering, 22(4), 1-21. https://doi.org/10.1007/s43452-022-00491-9.
Toslak, M., Aktürk, B., & Ulutaş, A. (2022). MEREC ve WEDBA Yöntemleri ile Bir Lojistik Firmasının Yıllara Göre Performansının Değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi, (33), 363-372. https://doi.org/10.31590/ejosat.1041106.
Jain, V., & Ajmera, P. (2019). Application of MADM methods as MOORA and WEDBA for ranking of FMS flexibility. International Journal of Data and Network Science, 3(2), 119-136. https://doi.org/10.5267/j.ijdns.2018.12.003.
Ulutaş, A. (2020). Stacker selection with PSI and WEDBA methods. International Journal of Contemporary Economics and Administrative Sciences, 10(2), 493-504. https://doi.org/10.5281/zenodo.4430021.
Al-Hawari, T., Naji, A., Alshraideh, H., & Bataineh, O. (2019). Extending the WEDBA to the fuzzy multi-criteria decision-making environment. International Journal of Computer Applications in Technology, 59(4), 330-346. https://doi.org/10.1504/IJCAT.2018.10016712.
Basar, M., & Tolga, A. C. (2021). Smart System Evaluation in Vertical Farming via Fuzzy WEDBA Method. In Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I., Cebi, S., Tolga, A. (Eds.) Intelligent and Fuzzy Techniques: Smart and Innovative Solutions. INFUS 2020 (pp. 534-542). Advances in Intelligent Systems and Computing, vol 1197. Springer, Cham. https://doi.org/10.1007/978-3-030-51156-2_61.
Işık, Ö. (2021). AHP, CRITIC ve WEDBA yöntemlerini içeren entegre bir ÇKKV modeli ile AXA Sigorta şirketinin finansal performansının analizi. Uluslararası İşletme, Ekonomi ve Yönetim Perspektifleri Dergisi, 5(2), 892-908. https://doi.org/10.29228/ijbemp.55049.
Durak, G., & Cagri Tolga, A. (2020). Process robot automation selection with MADM in airline cargo sector. In In Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I., Cebi, S., Tolga, A. (Eds.) Intelligent and Fuzzy Techniques: Smart and Innovative Solutions. INFUS 2020 (pp. 534-542). Advances in Intelligent Systems and Computing, vol 1197. Springer, Cham. https://doi.org/10.1007/978-3-030-51156-2_60.
Şimşek, O. (2022). Hibrid bir ÇKKV Modeli ile Türk Bankacılık Sektöründe Finansal Performans Değerlendirmesi. Turkish Studies- Economy, 17(2), 447-470. https://dx.doi.org/10.7827/TurkishStudies.62308.
Garg, R. (2017). Optimal selection of E‐learning websites using multiattribute decision‐making approaches. Journal of Multi‐Criteria Decision Analysis, 24(3-4), 187-196. https://doi.org/10.1002/mcda.1612.
Ecemiş, O., & Coşkun, A. Türkiye’de bilişim teknolojileri kullanımının ÇKKV yöntemleriyle incelenmesi 2014-2021 dönemi. Avrupa Bilim ve Teknoloji Dergisi, (37), 81-89. https://doi.org/10.31590/ejosat.1134753.
Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry, 13(4), 525. https://doi.org/10.3390/sym13040525.
Rao, R. V., & Singh, D. (2011). Evaluating flexible manufacturing systems using Euclidean distance-based integrated approach. International Journal of Decision Sciences, Risk and Management, 3(1-2), 32-53. https://doi.org/10.1504/IJDSRM.2011.040746.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Operations Intelligence
This work is licensed under a Creative Commons Attribution 4.0 International License.